簡易檢索 / 詳目顯示

研究生: 黃士凌
Huang, Shin-Lin
論文名稱: 以NBO方法研究BnF3n-1+團簇分子之形成及ClNO3系列分子之鍵結
Studies of Formation of BnF3n-1+ Cluster and Bonding in the ClNO3 Molecules by NBO Method
指導教授: 王小萍
Wang, Shao-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 86
中文關鍵詞: 負超共軛天然鍵結軌域分子軌域元始計算
外文關鍵詞: Negative hyperconjugation, Natural bond orbital, Molecular orbital, Ab initio calculation
相關次數: 點閱:136下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在LCBO-MO理論方法的NBO計算中,監測BnF3n-1+ (n=2~5) 簇合物中之硼原子與外接BF3分子中的氟原子間鍵結之作用力。我們發現到與簇合物聚集的驅動力為Lewis酸鹼作用,且以E(2)值來衡量此作用力:LP(F) →LP*(B),發現隨著團簇大小遞增,E(2)值會隨之減弱,此結果可解釋文獻中呈現的質譜圖並說明此類團簇的大小是受到限制的。數據顯示,BF3-BF2+的E(2)值最大( 137.6 kcal/mol ),若再增加一個BF3分子,則E(2)值就大幅下降( 97.26 kcal/mol ),一直到BF3-B4F11+其E(2)值降為4.58 kcal/mol。此外,由分析其相對應之結合能及電荷數據亦可得到相同的結論。

      第二部份,我們又以NBO方法計算ClNO3此一分子,從所有異構物中我們計算出以ClONO2之Cs對稱性結構最穩定。且經由天然鍵性軌域間的交互作用情形中發現,此類分子內存在許多穩定的〝非定域化能量〞,其中負超共軛效應扮演極為重要的角色,其次還有一些電子不定域化的作用存在,由於有這些電子不定域化的現象存在,使得此分子能穩定存在在平流層中進行反應。此外,由NBO之donor-acceptor作用分析及構型能量分析,都發現氯原子很明顯有參與負超共軛效應,藉由此結果可提供給研究負超共軛學者們一個極有價值的參考。

      In order to probe the driving force for formation of BnF3n-1+(n=2~5) ionic cluster from reactions of smaller (n=1~4) clusters with BF3, we have analyzed the donor-acceptor interaction energy, E(2). This is accomplished by LCBO-MO calculations, in which the Weinhold’s natural bond orbitals (NBO) approach was employed. Based on the NBO results, this type of aggregation may be as Lewis
    acid-base reaction and hence the extent of the interaction can be quantized by calculated magnitudes of E(2). The results reveal that the major force for the aggregation is ascribed to LP(F)  LP*(B) donor-acceptor interaction. More importantly the values of E(2) decreases uniformly from 138 kcal/mol (n=1) to 5 kcal/mol (n=4). This tendency can therefore be employed to account for the reduced stabilities, as n increases, found in MS spectroscopy.

      In the second part of this research, the NBO calculations have been carried out on various isomers of ClNO3. The most stable isomer found on the basis of HF energy is ClONO2 of Cs symmetry. Through NBO results it is seen that there are three major types of electron delocalization: LP(O)  Ryd*(N), LP(O)  BD*(NO), and LP(Cl)  BD*(NO). The latter two types are well-known as negative hyperconjugation (NHC) effects. It is considerably instructive that participation of NHC of the chlorine atom has been found in the present study. This conclusion has been further confirmed by analysis of conformation energies. We believe the effects of NHC on the stabilization of ClONO2 would provide a novel molecule for researchers interested in hyperconjugation.

    摘 要 I ABSTRACT II 目 錄 III 表目錄 V 圖目錄 VI 重要的專有名詞及其中文譯名 VII 第一章 緒論 1 第二章 理論背景 3 2-1、ClNO3分子之簡介 3 2-1-1 氯的儲存物質 3 2-1-2 平流層中相關之反應 5 2-2、負超共軛 7 2-2-1 負超共軛之歷史回顧 7 2-2-2 以分子軌域的觀點來說明負超共軛現象 9 2-3、團簇之簡介 11 2-4、配位鍵 ( dative bond ) 12 2-5、計算原理 14 2-5-1 分子軌域模型 ( molecular orbital models ) 15 2-5-2 基底 17 2-5-3 限定自洽場與非限定自洽場計算方法簡介 19 2-5-4 分析方法 21 第三章 計算方法 26 3-1、座標(orientation)的建立 26 3-2、元始計算 26 3-2-1 採用的計算條件 26 3-2-2 計算流程 26 3-2-3 計算的指令 27 第四章 結果與討論 28 4-1、基本結構分析 29 4-2、E(2)值之分析 30 4-2-1 BF2+與BF3分子 31 4-2-2 B2F5+分子 33 4-2-3 B3F8+分子 35 4-2-4 B4F11+分子 36 4-2-5 B5F14+分子 37 4-3、各團簇內作用力大小之比較 39 4-3-1 硼氟鍵之相關分析 40 4-3-2 NBO分析所得之額外資訊 42 4-4、ClNO3異構物之幾何最佳化結構 45 4-5、E(2)分析 49 4-6、XONO2之比較 53 第五章 結論 59 參 考 文 獻 83

    1. D. A. Hales, P. A. Haile, M. P. Barker and H. L. Hunt; J. Phys. Chem. A, 102, 8305(1998).

    2. W. J. Hehre, L. Radom and P. v. R. Schleyer; “ Ab Initio Molecular Orbital Theory,” Canada (1986).

    3. A. E. Reed, L. A. Curtiss and F. Weinhold; Chem. Rev., 88, 899(1988).

    4. A. E. Reed, R. B. Weinstock and F. Weinhold; J. Chem. Phys., 83, 1736(1985).

    5. (a) W. R. Stine; “Applied Chemistry,” 3th Ed., Wilkes University Press: Lexington, Massachusetts, 1994.
    (b) M. J. Molina and F. S. Rowland; Nature, 249, 810(1974).

    6. F. S. Rowland, J. E. Spencer and M. J. Molina; J. Phys. Chem., 80, 2711(1976).

    7. F. S. Rowland, J. E. Spencer and M. J. Molina; J. Phys. Chem., 80, 2713(1976).

    8. (a) G. Schonle, H. D. Knauth and R. N. Schindler; J. Phys. Chem., 83, 3297(1979).
    (b) M. J. Mollna, L. T. Mollna and T. Ishlwata; J. Phys. Chem., 84, 3100(1980).
    (c) S. C. Bhatla, M. George-Taylor, C. W. Merldeth and J. H. Hall; J. Phys. Chem., 87, 1091(1983).
    (d) S. C. Bhatla and J. H. Hall; J. Chem. Phys., 82, 1991(1985).
    (e) M. P. McGrath, M. M. Francl, F. S. Rowland and W. J. Hehre; J. Phys. Chem., 92, 5352(1988).
    (f) B. Casper, P. Lambotte, R. Minkwitz and H. Oberhammer; J. Phys. Chem., 97, 9992(1993).

    9. T. J. Lee; J. Phys. Chem., 99, 1943(1995).

    10. (a) J. J. Margltan; J. Phys. Chem., 87, 674(1983).
    (b) J. P. Burrows, G. S. Tyndall and G. K. Moortgat; J. Phys.Chem.,
    92,4340(1988).
    (c) S. L. Nickolaisen, S. P. Sander and R. R. Friedl; J. Phys. Chem., 100, 10165(1996).
    (d) L. Goldfarb, A. M. Schmoltner, M. K. Gilles, J. B. Burkholder and A. R. Ravishankara; J. Phys. Chem., 101, 6658(1997).
    (e) R. J. Yokelson, J. B. Burkholder, R. W. Fox and A. R. Ravishankara; J. Phys. Chem., 101, 6667(1997).

    11. J. P. D. Abbatt and M. J. Molina; J. Phys. Chem., 96, 7674(1992).

    12. D. R. Hanson and A. R. Ravishankara; J. Phys. Chem., 96, 2682(1992).

    13. P. Zou, J. Park, B. A. Schmitz, T. Nguyen and S.W. North; J. Phys. Chem.,
    106, 1004(2002).

    14. R. S. Mulliken; J. Phys. Chem., 1, 492(1933); 3, 520(1935); 7, 339(1937).

    15. L. O. Brockway; J. Phys. Chem., 41, 185(1937).

    16. J. D. Roberts, R. L. Webb and E. A. McElhill; J. Am. Chem. Soc., 72, 408(1950).

    17. R. Radom, L. Hoffmann, J. A. Pople, P. v. R. Schleyer, W. J. Hehre and L. Salem;
    J. Am. Chem. Soc., 94, 6221(1972).

    18. P. v. R. Schleyer and A. J. Kos; Tetrahedron, 39, 1141(1983).

    19. A. E. Reed and P. v. R. Schleyer; J. Am. Chem. Soc., 109, 7362(1987).

    20. W. F. Schneider, B. I. Nance and T. J. Wallington; J. Am. Chem.Soc., 117, 478(1995).

    21. D. S. Friedman, M. M. Francl and L. C. Allen; Tetrahedron, 41, 499(1985).

    22. M. L. Brecque; Mosaic, 22, 40(1991).

    23. E. A. Rohlfing, D. M. Cox, A. Kaldor and K. H. Johnson; J. Chem. Phys., 81, 3846(1984).

    24. S. C. O’Brien, J. R. Heath, R. F. Curl and R. E. Smalley; J. Chem. Phys., 88, 220(1988).

    25. B. K. Rao and P. Jena; J. Chem. Phys., 111, 1890(1999).

    26. T. Kurikawa, H. Takeda, M. Hirano, K. Judai, T. Arita, S. Nagao, A. Nakajima and K. Kaya; Organometallics, 18, 1430(1999).
    27. T. Yasuike, A. Nakajima, S. Yabushita and K. Kaya; J. Phys. Chem. A, 101, 5360(1997).

    28. T. Yasuike and S. Yabushita; J. Phys. Chem. A, 103, 4533(1999).

    29. G. M. Koretsky, K. P. Kerns, G. C. Nieman, M. B. Knickelbein and S. J. Riley; J. Phys. Chem. A, 103, 1997(1999).

    30. A. Haaland; Angew. Chem. Int. Ed. Engl., 28, 992(1989).

    31. P. A. Cassabella and P. J. Bray; J. Chem. Phys., 28, 1182(1958).

    32. R. Verma and K. S. Buckton; J. Chem. Phys., 46, 1565(1967).

    33. R. G. Barnes and W. V. Smith; Phys. Rev., 93(1954).

    34. S. Huzinaga; “Gaussian Basis Sets for Molecular Calculations,” Elsevier, New York, (1984).

    35. J. P. Foster and F. Weinhold; J. Am. Chem. Soc., 102, 7211(1980).

    36. R. McWeeney; “Coulson’s Valence,” 3rd Ed., Oxford University Press: New York, (1979).

    37. R. S. Mulliken; J. Chem. Phys., 23, 1833, 1841, 2338, 2343(1955).

    38. (a) A. E. Reed and F. Weinhold; J. Chem. Phys., 84, 5687(1986).
    (b) F. Weinhold; J. Mol. Struct., (Theochem) 181, 398(1997).
    (c) N. W. Mitzel and U. Losehand; J. Am. Chem. Soc., 120, 7320(1998).
    (d) L. Goodman, V. Pophristic and F. Weinhold; Acc. Chem. Res., 32, 983(1999).
    (e) P. Hobza, J. Sponer, E. Cubero, M. Orozco and F. J. Luque; J. Phys. Chem. B, 104, 6286(2000).
    (f) B.Reimann, K. Buchhold, S. Vaupel, B. Brutschy, Z. Havlas, V. Spirko and P. Hobza; J. Phys. Chem. A, 105, 5560(2001).
    (g) S. P. Ananthavel and M. Manoharan; Chem. Phys., 49, 269(2001).
    (h) S. J. Wilkens, W. M. Weatler, F. Weinhold and J. L. Markley; J. Am. Chem. Soc., 124, 1190(2002).

    39. R. S. Mulliken; J. Phys. Chem., 1, 492(1933); 3, 520(1935); 7, 339(1937).

    40. Gaussian 98 (Revision A.1), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian. Inc., Pittsburgh PA, (1998).

    41. NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Cerpenter and F. Weinhold. Cited in reference 54.

    42. B. K. King and F. Weinhold; J. Chem. Phys., 103, 333(1995).

    43. L. C. Anderson and D. W. Fahey; J. Phys. Chem., 94, 644(1990).

    44. W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb and M. J. Molina; Chemical Kinetics
    and Photochemical Data for Use in Stratospheric Modeling; Evaluation Number 11; NASA JPL Publications: 1994; No. 94-26.

    45. L. Antonija, P. Sasa and H. Milan; J. Phys. Chem. A, 107, 9168(2003).

    下載圖示 校內:2005-06-28公開
    校外:2007-06-28公開
    QR CODE