簡易檢索 / 詳目顯示

研究生: 王博賢
Wang, Bo-Shian
論文名稱: 珊瑚骨骼硼同位素記錄與其環境意義
Environmental Significance of the Boron Isotopic Composition in Coral Skeletons
指導教授: 游鎮烽
You, Chen-Feng
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 87
中文關鍵詞: 珊瑚黑潮硼同位素
外文關鍵詞: coral, Kuroshio Current, Boron isotope
相關次數: 點閱:89下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   溫室氣體中的二氧化碳與全球氣候變遷環環相扣,而海洋是地表二氧化碳主要的儲庫。海水硼同位素可作為pH值或pCO2的指標,因此藉由海洋生物性碳酸鈣中的硼同位素記錄,有機會了解過去海洋二氧化碳濃度的變化。本研究改良硼微昇華純化技術,取代繁雜的樹脂管柱程序,並有效去除有機質及大部分的鹽類。同位素分析則發展Cs2BO2+正離子質譜術,目前樣品硼需要量達250ng水準。以國際標準樣品NIST951測試,硼同位素比值11B/10B = 4.0519 (2σm = ± 0.09‰,n = 33),符合世界主要實驗室測值,且樣品經純化及濃縮步驟後,硼同位素比值不變。實驗室內標準珊瑚樣品經微昇華與濃縮步驟後, 11B/10B = 4.1517 (2σm = ± 0.19‰, n = 7),以NIST951為標準樣品換算,其δ11B = 24.66‰。實際應用於自然界樣品,分析綠島Porites sp.珊瑚骨骼的硼、氧及碳同位素,配合水文資料及Sr/Ca溫度,探討影響骨骼硼同位素變化的可能因素。研究結果顯示1988年至1990年δ11B分佈從21.3‰至29.1‰,平均,換算成相對應pH值,範圍從pH = 7.6到pH = 8.3;δ18O平均為-4.81‰,δ13C平均為-2.94‰,與世界其他地區珊瑚骨骼的氧、碳同位素比值相近。硼同位素與溫度及碳同位素呈現夏高冬低的週期起伏,而氧同位素則無明顯的季節性變化。研究結果推論珊瑚骨骼硼同位素變化可能主要與季節性黑潮的擺盪、菲律賓海與南海水團的分佈以及湧升流強度的變化有關,重以溫度驅動,使得夏季海水pCO2高於冬季,造成微環境海水在夏季有較高的pH值;此外短期的氣候事件(如聖嬰、反聖嬰事件)亦可能加劇季節性pH值的變化。至於生機效應的貢獻需要更進一步研究釐清。另外,骨骼碳同位素經修正動力學效應後顯示共生藻在夏季光合作用的時間或效率較高;而氧同位素則主要受溫度及動力學效應影響。

     Carbon dioxide is one of the most important greenhouse gases tightly linking to the global climatic variation. Geochemical investigations have demonstrated that boron isotope in marine carbonates is the only validated record to understand pH or pCO2 of seawater in the past. In this study, coral skeleton collected from an offshore islet, Lutao, southeastern Taiwan, was used for high precision trace element and stable isotope (C, O and B) analyses. We modified the micro-sublimation technique for boron separation and purification, which was manifested not only to avoid the complicated resin procedures but also to eliminate most of the organic matter and salt interferences. A modified Cs2BO2+ TIMS technique was developed for boron isotopic analyses with precision of 0.09‰ and 0.19‰ for NBS951 (11B/10B = 4.0519, 2σm = ± 0.09‰,n = 33) and a coral standard (11B/10B = 4.1517, 2σm = ± 0.19‰, n = 7) respectively and applied successfully for 30 coral determination. The δ11B in Lutao coral skeleton varies largely from 21.3 to 29.1‰ during 1988 to 1990 (from pH = 7.6 to 8.3) with a mean value of 24.0‰. These results display strong seasonal variability, which is similar to the variation of carbon isotope and monthly average temperature. Interestingly, the variation of oxygen isotope is much smaller and shows no effect of seasonality. The boron isotopic composition of Lutao coral skeletons are affected mainly by: (1) variation of seawater pCO2 as a result of seasonal influence by intrusion of the Kuroshio Current or local upwelling; (2) short-term climatic event such as El Niño or La Niña; and (3) biological vital effect. The carbon isotopes reflect possible effects of symbiotic photosynthetic activity and the oxygen is mainly influenced both by temperature or kinetic. Future study will focus on laboratory culture experiments to evaluate possible vital artifact in coral skeleton.

    摘要 I Abstract II 誌謝 III 章節目錄 IV 表目錄 VII 圖目錄 VIII = 章節目錄 = 第一章 序論 1.1 研究背景……………………………………………………………………1 1.2 前人研究……………………………………………………………………4 1.2.1 珊瑚骨骼的生長與鈣化……………………………………………4 1.2.2 珊瑚骨骼的螢光…………………………………………………….6 1.2.3 珊瑚骨骼中的微量元素…………………………………………….6 1.2.3.1 Sr/Ca溫度計………………………………………………8 1.2.3.2 Mg/Ca及U/Ca溫度計……………………………………10 1.2.4 珊瑚骨骼中的氧、碳同位素………………………………………10 1.2.5 珊瑚骨骼中的硼同位素…………………………………………11 1.3 研究目的…………………………………………………………………16 第二章 原理 2.1 珊瑚的構造、生理與生長環境……………………………………………17 2.2 珊瑚鈣化與骨骼化學組成的機制………………………………………19 2.3 珊瑚骨骼中的同位素……………………………………………………23 2.3.1 硼同位素…………………………………………………………23 2.3.1.1 硼的同位素分化係數………………………………………24 2.3.1.2 海水硼同位素組成與pH值的關係………………………25 2.3.2 氧同位素…………………………………………………………28 2.3.3 碳同位素…………………………………………………………29 第三章 研究方法 3.1 綠島環境、氣候與水文背景………………………………………………30 3.1.1 地理與地質…………….…………………………………………30 3.1.2 氣候與水文………………………………………………………30 3.2 珊瑚標本的採集與前處理………………………………………………34 3.2.1 標本採集……………………………………………………………34 3.2.2 標本細部取樣………………………………………………………34 3.2.3 標本前處理…………………………………………………………34 3.3 硼同位素分析方法………………………………………………………35 3.3.1 硼同位素質譜分析術的演進………………………………………35 3.3.2 實驗環境……………………………………………………………37 3.3.3 樣品前處理…………………………………………………………39 3.3.4 樣品裝載……………………………………………………………41 3.3.5 Cs2BO2+正離子硼同位素分析……………………………………41 3.3.6 重複(duplicate)檢驗……………………………………………42 3.4 氧、碳同位素分析方法…………………………………………………43 第四章 實驗結果與討論 4.1 技術評估…………………………………………………………………45 4.1.1 樹脂回收率測試…………………………………………………45 4.1.2 微昇華及濃縮回收率測試………………………………………...45 4.1.3 硼正離子質譜分析術之評估……………………………………...47 4.1.4 珊瑚骨骼清洗程序評估(氧、碳同位素前處理)…………………47 4.1.5 綠島珊瑚骨骼硼同位素重複分析………………………………50 4.2 珊瑚標本的生長速率、螢光與同位素分析………………………………50 4.2.1 骨骼x-ray與螢光分析…………………………………………50 4.2.2骨骼硼、氧及碳同位素……………….……………………………51 4.3 硼、氧及碳同位素主控制因子解析……………………………………56 4.3.1 溫度對硼同位素的效應.….………………………………………56 4.3.2 鹽度對氧同位素的貢獻……………………………………………57 4.3.3 基礎生產力變化對海水碳同位素的影響…………………………60 4.3.4 碳同位素動力學效應的修正………………………………………60 4.4 影響珊瑚骨骼硼同位素變化的因素……………………………………62 4.4.1 季節性洋流及水團的變化…………………………………………64 4.4.1.1 黑潮的特性…………………………………………………64 4.4.1.2 季節性黑潮變化對海水pH值的影響……………………65 4.4.2 海水的二氧化碳分壓(pCO2)……………………………………67 4.4.2.1 海洋pCO2的變化機制……………………………………67 4.4.2.2 西菲律賓海與南海季節性pCO2的變化…………………67 4.4.3 湧升流的作用………………………………………………………71 4.4.4 短期氣候事件………………………………………………………71 4.4.4.1 聖嬰與反聖嬰現象…………………………………………71 4.4.4.2 反聖嬰現象對海洋pH值/ pCO2的影響…………………74 4.5 綠島柴口珊瑚骨骼硼同位素對於環境的意義…………………………75 第五章 結論………………………………………………………………………76 參考文獻…………………………………………………………………………78 = 表目錄 = 表1-1、常見珊瑚骨骼環境記錄指標…………………………………………………5 表2-1、文獻中以實驗或計算得到硼的同位素分化係數………………………24 表3-1、硼同位素主要分析技術比較……………………………………………38 表3-2、陰離子交換樹脂Amberlite IRA-743純化試劑的程序……………………38 表4-1、微昇華純化技術回收評估…………………………………………………46 表4-2、世界主要實驗室Cs2BO2+分析技術比較…………………………………48 表4-3、兩種清洗方式的氧、碳同位素比值無明顯差異…………………………47 表4-4、柴口珊瑚岩芯標本的年生長速率………………………………………52 表4-5、現生珊瑚的硼濃度與同位素文獻資料……………………………………53 表4-6、硼在不同溫度下的分化係數……………………………………………56 = 圖目錄 = 圖1-1、冰芯二氧化碳濃度變化記錄與硼同位素氣候重建應用……………………3 圖1-2、水箱養殖實驗:水溫與骨骼生長速率之關係………………………………7 圖1-3、澳洲大堡礁珊瑚螢光強度與河水逕流量的關係…………………………7 圖1-4、以SIMS分析珊瑚骨骼Sr/Ca比值探討微環境的生機效應……………9 圖1-5、氧、碳同位素的動力學效應修正原理…………………………………12 圖1-6、早全新世有孔蟲硼同位素記錄…………………………………………12 圖1-7、實驗室養殖珊瑚骨骼硼、碳同位素隨光度、餵食量及深度的變化………14 圖1-8、高解析珊瑚骨骼硼氧同位素記錄………………………………………15 圖2-1、珊瑚蟲主要結構特徵……………………………………………………18 圖2-2、”Trans Calcification Mechanism”模型…………………………………18 圖2-3、全球珊瑚礁分佈…………………………………………………………21 圖2-4、珊瑚得到骨骼中微量元素對海水的分配係數……………………………21 圖2-5、骨骼微環境中可能的離子傳輸或交換途徑………………………………22 圖2-6、水體中兩種型態硼濃度及其同位素比值隨pH值的變化………………27 圖3-1、綠島地質圖…………………………………………………………………31 圖3-2、綠島海域溫度、鹽度及密度隨深度的變化…………………………………32 圖3-3、綠島北面的海水溫鹽圖……………………………………………………32 圖3-4、衛星拍攝台灣附近海域冬季季節性平均海水表面溫……………………33 圖3-5、衛星拍攝台灣附近海域季節性海洋基礎生產力的變化…………………33 圖3-6、鋸片機使用實體圖…………………………………………………………36 圖3-7、微採樣用三維立體鋸台……………………………………………………36 圖3-8、Class 10工作箱……………………………………………………………40 圖3-9、微昇華純化技術…………………………………………………………40 圖3-10、成功大學TIMS實機圖………………………………………………44 圖3-11、成功大學IRMS實機圖………………………………………………44 圖4-1、Amberlite IRA-743陰離子交換樹脂對硼回收率測試………………….46 圖4-2、以Cs2BO2+ TIMS質譜術分析國際標準樣品NIST 951………………49 圖4-3、以Cs2BO2+ TIMS質譜術分析實驗室內標準珊瑚樣品…………………49 圖4-4、珊瑚骨骼硼同位素重複分析的結果………………………………………50 圖4-5、骨骼螢光與x-ray攝影……………………………………………………52 圖4-6、各文獻珊瑚骨骼硼同位素比值分佈之比較……………………………53 圖4-7、骨骼硼、氧、碳同位素與海表溫異常隨時間的變化………………………54 圖4-8、移動平均後硼、氧、碳同位素與海表溫異常隨時間的變化………………55 圖4-9、溫度對硼同位素的分化效應………………………………………………58 圖4-10、氧同位素換算為鹽度後隨時間的變化…………………………………58 圖4-11、綠島周圍海域實測鹽度資料……………………………………………59 圖4-12、台東成功自1971至2000年的平均逐月雨量變化……………………59 圖4-13、碳同位素動力學效應的修正……………………………………………61 圖4-14、硼同位素與動力學效應修正之碳同位素隨時間的變化…………………63 圖4-15、硼同位素對動力學效應修正後碳同位素相關性比較…………………63 圖4-16、綠島柴口珊瑚骨骼所記錄微環境pH值隨時間的變化………………64 圖4-17、台灣附近海域水深30公尺平均流矢圖…………………………………66 圖4-18、OR 266、 287及 316航次海水垂直剖面pH值隨深度的變化……66 圖4-19、1995年全球表層海水季節性二氧化碳分壓的變化……………………68 圖4-20、北太平洋二氧化碳通量的季節性變化…………………………………69 圖4-21、全球二氧化碳通量季節性分佈……………………………………………69 圖4-22、南海SEATS站混合層時間序列之TCO2/NTCO2及fCO2………………70 圖4-23、南海ΔfCO2的時間序列變化……………………………………………70 圖4-24、西北太平洋自赤道至中緯海域的海水與大氣pCO2……………………72 圖4-25、台灣東南海域2002年七月,pH值隨深度的變化………………………72 圖4-26、El Niño及La Niña的發生時,全球各地氣候異常的現象………………73 圖4-27、正常年、聖嬰與反聖嬰年大氣及海洋環流變化…………………………74 圖4-28、海洋-大氣季節性的碳循環變化與控制因子……………………………75

    壹、中文部分
    一、王谷神 (2003) 探討影響珊瑚骨骼中硼同位素變化之環境因素。國立台灣大學地質科學研究所碩士論文。
    二、王穎 (1996) 中國海洋地理,科學出版社。
    三、李福祥(2003)台灣東部黑潮流域之海水碳化學研究。國立中山大學海洋地質及化學研究所碩士論文。
    四、林素琴 (1975) 綠島、蘭嶼地理景觀之綜合比較。國立台灣師範大學地理研究報告,第一期。
    五、邱景星 (1999) 利用珊瑚鍶鈣比重建綠島長時間尺度海表溫度記錄之研究。國立台灣大學海揚研究所博士論文。
    六、周文臣(2004)南海時間序列測站海水之碳化學參數與碳-13之垂直分佈及其在混合層的化學變化。國立中山大學海洋地質及化學研究所博士論文。
    七、陳正宏、劉聰桂、楊燦堯、陳于高 (1984) 台灣地質圖說明書 - 綠島。經濟部中央地質調查所。
    八、楊益(1999)中尺度渦旋對台灣海流(黑潮)體積通量之影響。國立台灣大學海洋研究所博士論文。
    九、劉衛國、彭子成、蕭應凱、王兆榮、聶寶符、安芷生 (1999) 南海珊瑚礁硼同位素組成及其環境意義。地球化學期刊,第二十八卷第六期。


    貳、英文部分
    Asami R., Yamada T., Iryu Y., Meyer C. P., Quinn T. M., Paulay G. (2004) Carbon and oxygen isotopic composition of a Guam coral and their relationships to environmental variables in the western Pacific. Palaeogeog. Palaeoclim. Palaeoecol. 212: 1-22.
    Bard C. R., Blamart D., Cuif J. P., Leclerc A. J. (2003) Microanalysis of C and O isotopes of azooxanthellate and zooxanthellate corals by ion microprobe. Coral Reefs 22: 405-415.
    Bard C. R., Chaussidon M., Lanord C. F. (2003) pH control on oxygen isotopic composition of symbiotic corals. Earth Planet. Sci. lett. 215: 275-288.
    Beck J.W., Edwards R. L., Ito E., Taylor F. W., Recy, Rougerie J. F., Joannot P., and Henin C. (1992) Sea surface temperature from coral skeletal strontium calcium ratios. Science 257: 644-647.
    Beck N. L., Anne J. L., Corrège T., Blamart D., Delcroix T. (2000) A coral δ18O record of ENSO driven sea surface salinity variability in Fiji (south-western tropical Pacific). Geophys. Res. Lett. 27: 3897-3900.
    Bessat F., Buigues D. (2001) Two centuries of variation in coral growth in a massive Porites colony from Moorea (French Polynesia): a response of ocean-atmosphere variability from south central Pacific. Palaeogr., Palaeoclimatol., Palaeoecol. 175: 381-392.
    Boto K., Isdale P. (1985) Fluorescent bands in massive corals result from terrestrial fulvic acid inputs to nearshore zone. Nature 315: 396-397.
    Chao S. Y., Shaw P. T., Wu S. Y. (1996) El Niño modulation of the South China Sea circulation. Prog. Oceanog. 38: 51-93.
    Chen C. A. (1999) Analysis of scleractinian distribution in Taiwan including a pattern congruent with sea surface temperatures and currents: examples from Acropora and Faviidae corals. Zoolog. Stud. 38: 119-129.
    Chen C. T., Huang M. H. (1996) A Mid-Depth Front Separating the South China Sea Water and the Philippine Sea Water. J. Oceanogr. 52: 17-25.
    Cohen A. L., Sohn R. A. (2004) Tidal modulation of Sr/Ca ratios in a Pacific reef coral. Geophys. Res. Lett. 31: L16310, doi:10.1029/2004GL020600.
    Deyhle A. (2003) Improvements of boron isotope analysis by positive thermal ionization mass spectrometry using static multicollection of Cs2BO2+ ions. Int. J. Mass Spectrom. 206: 79-89.
    Dicken A. G., Goyet C. (1994) DOE - Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water: version 2. ORNL/CDIAC: 74.
    Dove P. M., de Yoreo J. J., Weiner S. (2003) Reviews in mineralogy and geochemistry: biomineralization. Mineralogical Society of America Geochemical Society.
    EPICA community members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429: 623-628.
    Fairbanks R. G. (1979) Annual periodicity of the 18O/16O and 13C/12C ratios in the coral Montastea annularis. Geochem. Cosmochem. Acta 43: 1009-1020.
    Fairbanks R. G., Evans M. D., Rubenstone J. L., Mortlock R. A., Broad K., Moore M. D., Charles C. D. (1997) Evaluating climate indices and their geochemical proxies measured in corals. Coral Reefs 16: S93-S100.
    Fallon S. J., McCulloch M. T., Woesik R., Sinclair D. J. (1999) Coral at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet. Sci. lett. 172: 221-238.
    Furla P., Galgani I., Durand I., Allemand D. (2003) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J. Exp. Biol. 203: 3445-3457.
    L. S. Fang L. S., Y. C. Chou Y. C. (1992) Concentration of fulvic acid in the growth bands of hermatypic corals in relation to local precipitation. Coral Reefs 11: 187-191.
    Ferronsky V. I., V. S Brezgunov V. S. (1989) Stable isotopes and ocean mixing. In Handbook of Environmental Isotope Geochemistry, Vol. 3, Fritz, P., and J. C. Fontes (eds). Eslevier: Amsterdam; 1-26.
    Fischer H., Wahlen M., Smith J., Mastroianni D., Deck B. (1999) Ice Core Records of Atmospheric CO2 around the last three glacial terminations. Science 283: 1712-1714.
    Gaillardat J., Allégre C. (1995) Boron isotopic compositions of corals: Seawater or diagenesis record? Earth Planet. Sci. Lett. 136: 665-676.
    Gaillardet J., Lemarchand D., Göpel C., Manhès G. (2001) Evaporation and sublimation of boric acid: application for boron purification from organic rich solutions. Geostand. Newslett. 25: 1-9.
    Grottoli A. G. (2002) Effect of light and brine shrimp on skeletal δ13C in the Hawaiian coral Porites compressa: A tank experiment. Geochem. Cosmochem. Acta 66: 1955-1967.
    Heikoop J. M., Dunn J. J., Risk M. J., Schwarcz H. P., McConnaughey T. A., Sandeman I. M. (2000) Separation of kinetic and metabolic isotope effects in carbon-13 records preserved in reef coral skeletons. Geochem. Cosmochem. Acta 64: 975-987.
    Hemming N. G., Hanson G. N. (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochim. Cosmochim. Acta 56: 537-543.
    Hemming N. G., Hanson G. N. (1994) A procedure for the isotopic analysis of boron negative thermal ionization mass spectrometry. Chem. Geol. 144, 147-156.
    Hemming N. G., Reeder R. J., Hanson G. N. (1995) Mineral/fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate. Geochim. Cosmochim. Acta 59: 371-379.
    Hemming N. G., Guilderson T. P., Fairbanks R. G. (1998) Seasonal variations in the boron isotopic composition of coral: A productivity signal? Global Biogeochem. Cy. 12: 581-586.
    Hönisch B., Hemming N. G., Grottoli A. G., Amat A., Hanson G. N., Buma J. (2004) Assessing scleractinian corals as recorders for paleo-pH: Empirical calibrations and vital effects. Geochim. Cosmochim. Acta 68: 3675-3685.
    Inoue H. Y., Sugimura Y. (1992) Variations and distributions of CO2 in and over the central equatorial Pacific during the period from the 1986/88 El Niño event to the 1988/89 La Niña event. Tellus 44B, 1-22.
    Inoue H. Y., Matsueda H., Ishii M., Fushimi K., Hirota M., Asanuma I., Takasugi Y. (1995) Long-term trend of the partial pressure of carbon dioxide (pCO2) in surface waters of the western North Pacific. 1984-1993. Tellus 47B: 391-413.
    Inoue H. Y., Ishii M., Matsueda H., Aoyama M., Asanuma I. (1996) Changes in longitudinal distribution of the partial pressure of CO2 (pCO2) in the central and western equatorial Pacific, west of 160°W. Geophys. Res. Lett. 23: 1781-1784.
    Inoue H. Y., Sugimura Y. (1988) Distribution of the pCO2 in surface seawater of the western and central equatorial Pacific during the 1986/87 El Niño/Southern Oscillation event. Geophys. Res. Lett. 15: 1499-1502.
    Isdale P. (1984) Fluorescent bands in massive corals record centuries coastal rainfall. Nature 310: 578-579.
    Isikawa T., Nakamura E. (1990) Suppression of boron volatilization from a hydrofluoric acid solution using a boron-mannitol complex. Anal. Chem. 62: 2612-2616.
    IUPAC (1998) Isotopic compositions of the elements 1997. Pure Appl. Chem. 70: 217-235.
    Kakihana H., Kotaka M., Satoh S., Nomura M., Okamoto M. (1977) Fundamental studies on the ion-exchange separation of boron isotopes. Bull Chem. Soc. Jap. 50: 158-163.
    Kilbourne K. H., Quinn T. M., Taylor F. W., Delcroix T., Gouriou Y. (2004) El Niño-Southern Oscillation-related salinity variations recorded in the skeletal geochemistry of a Porites coral from Espiritu Santo, Vanuatu. Paleoceanography 19: PA4002, doi:10.1029/2004PA001033.
    Klein R., Loya Y., Gvirtzman G., Isdale P. J., Susic M. (1990) Seasonal rainfall in the Sinai desert during the late Quaternary inferred from fluorescent bands in fossil corals. Nature 345: 145-147.
    Knutson D. W., Buddemeier R. W., Smith S. V. (1972) Coral Chronometers: seasonal growth bands in reef corals. Science 177: 270-272.
    Kűhl M., Cohen Y., Salsgaard T., Jørgensen B. B., Revsbech N. P. (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar. Eocl. Prog. Ser. 117: 159-172.
    Leeman W. P., Vockejr R. D., Beary E. S., Paulsen P. J. (1991) Precise boron isotopic analysis of aqueous samples: ion exchange extraction and mass spectrometry. Geochem. Cosmochem. Acta 55: 3901-3907.
    Lemarchand D., Gaillardet J., Göpel C., Manhès G. (2002) An optimized procedure for boron separation and mass spectrometry analysis for river samples. Chem. Geol. 182, 323-334.
    Liang W. D., Jan J. C., Tang T. Y. (2000) Climatological Wind and Upper Ocean Heat Content in the South China Sea. ACTA Oceanogr. Taiwanica 38: 91-114.
    Liang W. D., Tang T. Y., Yang Y. J., Ko M. T., Chuang W. S. (2003) Upper-ocean currents around Taiwan. Deep-Sea Res. 50: 1085-1105.
    Lin H. L., Wang L. W., Wang C. H., Gong G. C. (1999) Vertical distribution of δ13C of dissolved inorganic carbon in the northeastern South China Sea. Deep-Sea Res.Ⅰ46: 757-775.
    Linsley B. K., Messier R. G., Dunbar R. B. (1999) Assessing between-colony oxygen isotope variability in the coral Porites lobata at Clipperton Atoll. Coral Reefs 18: 13-27.
    Liu K. K., Chao S. Y., Shaw P. T., Gong G. C., Chen C. C. and Tang T. Y. (2002) Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep-Sea Res. Ⅰ 49: 1387-1412.
    Liu Y., Tossell J. A. (2003) Ab initio molecular orbital calculations for boron isotope fractionation on boric acids and borates. Department of Chemistry and Biochemistry, University of Maryland, USA.
    Lough J. M., Barnes D. J. (2000) Environmental controls on growth of the massive coral Porites. J. Exp. Mar. Biol. Ecol. 245: 225-243.
    Marshall A. T., Clode P. (2004) Calcification rate and the effect of temperature in a zooxanthellate and an azoozanthellate scleracterian reef coral. Coral Reefs 23: 218-224.
    Marshall J. F., McCulloch M. T. (2002) An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature. Geochim. Cosmochim. Acta 66: 3263-3280.
    McCulloch M. T., Gagan M. K., Mortimer G. E., Chivas A. R., Isdale P. J. (1994) A high resolution Sr/Ca and δ18O record from the Great Barrier Reef, Australia, and the 1982-1983 El Niño. Geochem. Cosmochem. Acta 58: 2747-2754.
    McConnaughy T. A. (1986) Oxygen and carbon isotope disequilibria in Galapagos corals: isotopic thermometry and calcification physiology. Ph.D. Thesis, University of Washington.
    McConnaughey T. A. (1989) 13C and 18O isotopic disequilibrium in biological carbonates: Patterns. Geochem. Cosmochem. Acta 53: 151-162.
    McConnaughey T. A., Whelan J. F. (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci. Rev. 42: 95-117.
    McConnaughey T. A. (2003) Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: carbonate and kinetic models. Coral Reefs 22: 316-327.
    Meibom A., Stage M., Wooden J., Constantz B. R., Dunbar R. B., Owen A., Grumet N., Bacon C. R., Chamberlain C. P. (2003) Monthly Strontium/Calcium oscillations in symbiotic coral aragonite: Biological effects limiting the precision of the paleotemperature proxy. Geophys Res. Lett. 30: 71-1 – 71-4.
    Mitsuguchi T., Matsumoto E., Abe O., Uchida T., Isdale P. J. (1996) Mg/Ca thermometry in coral skeletons. Science 274: 961-963.
    Mitsuguchi T., Matsumoto E., Uchida T. (2003) Mg/Ca and Sr/Ca ratios of Porites coral skeleton: Evaluation of the effect of skeletal growth rate. Coral Reefs 22: 381-388.
    Nakano T., Nakamura E. (1998) Static multicollection of Cs2BO2+ ions for precise boron isotopic analysis with positive thermal ionization mass spectrometry. Int. J. Mass Spectrom. 176, 13-21.
    Oi T. (2000) Calculations of reduced partition function ratios of monomeric and dimeric boric acids and borates by the ab initio molecular orbital theory. J. Nucl. Sci. Technol. 37: 166-172.
    Omata T., Suzuki A., Kawahat H., Okamoto M. (2005) Annual fluctuation in the stable carbon isotope ratio of coral skeletons: The relative intensities of kinetic and metabolic isotope effects. Geochem. Cosmochem. Acta 69: 3007-3016.
    Park H., Schlesinger W. H. (2002) Global biogeochemical cycle of boron. Global Biogeochem. Cyc. 16: 1072, doi:10,1029/2001BG001766.
    Palmer M. R., Spivack A. J., Edmond J. M. (1987) Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochem. Cosmochem. Acta 51: 2319-2323.
    Palmer M. R., Pearson P. N. (2003) A 23,000-Year Record of Surface Water pH and pCO2 in the Western Equatorial Pacific Ocean. Science 300: 480-482.
    Peng Z., Xie D., He X., Zhang Z., Sheng L., Gao H., Nie B., Chen T., Zhon J. (2001) The UV induced fluorescence in Porites coral from Hainan Island, China and its paleo-environmental implications. Chinese J. Geochem. 20, No. 1.
    Petit J. R., Jouzel J., Raynaud D., Barkov N. I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V. M., Legrand M., Lipenkov V. Y., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M. (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429-436.
    Ren L., Linsley B. K., Wellington G. M., Schrag P. S., Guldberg O. H. (2002) Deconvolving the δ18O seawater component from subseasonal coral δ18O and Sr/Ca at Rarotonga in the southwestern subtropical Pacific for the period 1726 to 997. Geochem. Cosmochem. Acta 67: 1609-1621.
    Reuer M. K., Boyle E. A., Cole J. E. (2003) A mid-twentieth century reduction in tropical upwelling inferred from coralline trace element proxies. Earth Planet. Sci. lett. 210: 437-452.
    Reynaud S., Hemming N. G., Anne J. L., Gattuso J. P. (2004) Effect of pCO2 and temperature on the boron isotopic composition of the zooanthellate coral Acropora sp.. Coral Reefs 23: 539-546.
    Risk M J., Sherwood O. A., Heikoop J. M., Llewellyn G. (2003) Smoke signals from corals: isotopic signature of 1997 Indonesian ‘haze’ event. Mar. Geol. 202: 71-78.
    Ropelewski C. F., Halpert M. S. (1989) Precipitation Patterns Associated with the High Index Phase of the Southern Oscillation. J. Climate 2: 268-284.
    Rosenfeld M., Yam R., Shemesh A., Loya Y. (2003) Implication of water depth on stable isotope composition and skeletal density banding patterns in Porites lutea colony: results from a long-term translocation experiment. Coral Reefs 22: 337-345.
    Sen S., Stebbins J. F., Hemming N. G., Ghosh B. (1994) Coordination environments of B impurities in calcite and aragonite polymorphs: a 11B MAS NMR study. Amer. Mineral. 79: 819-825.
    Shen C. C., Lee T., Chen C. Y., Wang C. H., Dai C. F., Li L. A. (1996) The calibration of D(Sr/Ca) versus sea temperature relationship for Porites corals. Geochim. Cosmochim. Acta 60: 3846-3858.
    Shen G. T., Dunbar R. B. (1995) Environmental controls on uranium in reef corals. Geochim. Cosmochim. Acta 59: 2009-2024.
    Shen J. S., You C. F. (2003) A 10-fold improvement in the precision of boron isotopic analysis by negative thermal ionization mass spectrometry. Anal. Chem. 75, 1972-1977.
    Sinclair D. J., Leslie P., Kinsley J., McCulloch M. T. (1998) High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochem. Cosmochem. Acta 62: 1889-1901.
    Sinclair D. J. (1999) High spatial-resolution analysis of trace elements in coral using laser ablation ICP-MS. PhD thesis, Australian National University.
    Spivack A. J., Edmond J. M. (1987) Determination of B isotopic ratios by thermal ionization mass spectrometry of the dicesium metaborate cations. Anal. Chem. 58: 31-35.
    Swart P. K., Szmant A., Porter J. W., Dodge R. E., Tougas J. I., Southam J. (2005) The isotopic composition of respired carbon dioxide in scleractinian corals: Implications for cycling of organic carbon in corals. Geochem. Cosmochem. Acta 69: 1495-1509.
    Takahashi T., Sutherland S. C., Sweeney C., Poisson A., Metzl N., Tilbrook B., Bates N., Wanninkhof R., Feely R. A., Sabine C., Olafsson J., Nojiri Y. (2002) Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. Ⅱ 49: 1601-1622.
    Tang T. Y., Tai J. H., Yang Y. J. (2000) The flow pattern north of Taiwan and migration of the Kuroshio. Cont. Shelf Res.20: 349-371.
    Tonia S., Pennisi M., Leeman W. P. (1997) Precise boron isotopic analysis of complex silicate (rock) samples using alkali carbonate fusion and ion-exchange separation. Chem. Geol. 142: 129-137.
    Trenberth K. E. (1997) The definition of El Niño. Bull. American Meteorolog. Soci. 78: 2771-2777.
    Tsai W. T., Liu K. K. (2003) An assessment of the effect of sea surface surfactant on global atmosphere-ocean CO2 flux. J. Geophys. Res. 108: doi: 10.1029/2000JC000740.
    Urey H. C. (1947) The thermodynamic properties of isotopic substances. J . Chem. Soc. (London): 562 -581.
    Vengosh A., Chivas A. R., Mcculloch M. T. (1989) Direct determination of boron and chlorine isotopic compositions in geological materials by negative thermal-ionization mass spectrometry. Chem. Geol. 79: 333-343.
    Vengosh A., Kolodny Y., Starinsky A., Chivas A. R., McCulloch M. T. (1991) Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim. Cosmochim. Acta 55: 2901-2910.
    de Villiers S., Shen G. T., Nelson B. K. (1994) The Sr/Ca-temperature relationship in coralline aragonite: influence of variability in (Sr/Ca)seawater and skeletal growth parameters. Geochim. Cosmochim. Acta 58: 197-208.
    Wei G., Sun M., Li X., Nie B. (2000) Mg/Ca, Sr/Ca and U/Ca ratios of a Porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature. Palaeogr., Palaeoclimatol., Palaeoecol. 162: 59-74.
    Wyndham T., McCulloch M., Fallon S., Alibert C. (2004) High-resolution coral records of rare earth elements in coastal seawater: biogeochemical cycling and a new environmental proxy. Geochem. Cosmochem. Acta 68: 2067-2080.
    Xue H., Chai F., Pettigrew N., Xu D. (2004) Kuroshio intrusion and the circulation in the South China Sea. J. Geophys. Res. 109: C02017, 1-14.
    You C. F., Shen J. S., Lee T. (1999) Precise boron isotopic analysis by negative thermal ionization mass spectrometry. Journal of National Cheng Kung University, Science, Eng. Med. Sci. Sect. 34: 1-11.
    Yu K., Chen T., Huang D., Zhao H., Zhong J., Liu D. (2001) The high-resolution climate recorded in the δ18O of Porites lutea from the Nansha Islands of China. Chinese Sci. Bull. 46: 2097-2102.
    Zeebe R. E., Gladrow D. W. (2001) CO2 in seawaters: equilibrium, kinetics, isotopes. Elsevier Oceanography Series.
    Zeebe R. E., Sanyal A., Ortiz J. D., D. W. Gladrow (2001) A theoretical study of the kinetics of the boric acid-borate equilibrium in seawater. Mar. Chem. 73: 113-124.
    Zhai W., Dai M., Cai W. J., Wang Y., Hong H. (2005) The partial pressure of carbon dioxide and air-sea fluxes in the northern South China Sea in spring, summer and autumn. Mar. Chem. 96: 87-97.
    Zinke J., Dullo W. C., Heiss G. A., Eisenhauer A. (2004) ENSO and Indian Ocean subtropical dipole variability is . Earth Planet. Sci. Lett. 228: 177-194.

    下載圖示 校內:2006-07-11公開
    校外:2007-07-11公開
    QR CODE