簡易檢索 / 詳目顯示

研究生: 歐旭峯
Ou, Hsu-Fong
論文名稱: 微小元件流體自我組裝技術之研究
The Research of Small Devices Binding by Fluidic Self-Assembly Techniques
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 98
中文關鍵詞: 自我組裝單分子層流體自我組裝組裝基版接觸角親水性疏水性
外文關鍵詞: Fluidic self assembly, contact angle, Hydrophilic, Hydrophobic, Substrate, SAMS
相關次數: 點閱:219下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著元件微小化的趨勢,傳統pick and place 組裝方式已無法持續降低組裝成本,因此如何增加組裝效益及降低成本,便是發展流體自我組裝技術的最大動力。本研究以 1mm´1mm正方的矽晶片高溫氧化使其表面形成SiO2後,嘗試以銅或電鍍錫材質的substrate,以實驗方法找出具較佳黏附力的Self-Assembly Monolayer ( SAM)。再設計並製作自我組裝實驗之循環設備,將表面塗佈SAM 的小型元件及substrate進行流體組裝實驗;利用最終的binding rate 的結果,探討不同組裝pattern、組裝元件數量及循環組裝次數與binding rate的關係,再加以進行提升binding rate 的改善。
    由實驗結果發現;Dodecanethiol 對於SiO2 與 銅材質的substrate 具有較佳的黏附力;挑選Dodecanethiol 為SAM 時,投入組裝之小型元件數量及循環組裝次大略與binding rate 成正相關。但實驗設備的流場狀況、組裝pattern形狀、實驗設備材質皆會影響binding rate。
    最後本研究著重提升binding rate分為兩大部分執行:一、嘗試不同塗佈SAM 的方法,將substrate 及小型元件乾燥後再塗佈SAM,由contact angle 的變化證明可延長表面疏水特性。二、改善組裝渠道內流場分布;減少solid boundary對流場的影響,由實驗結果發現不同組裝pattern,均勻流場對整體binding rate 具有30 % 左右的提升;而在binding rate 改善實驗中也得到:最佳投入元件數量及循環組裝時間有助於最短時間內達到最佳binding rate的結論。

    Abstract
    Recently, more and more optical or semiconductor devices are getting smaller by new generation production process. How to reduce packing cost will be an important issue for smaller devices. Conventional “pick & place” assembly methods will get the bottleneck to reduce the assembly cost. At that time, “pick and place “will not get used to assemble a large number of parts which scale is from micrometer to nanometer.
    To accomplish efficient assembly of a very large number of small components and self- assembly methods will offer different ways to solve these problems. In business field, “Alien Tech company” using Fluidic Self-Assembly methods develop RFID packing technology.
    This research, we will attempt to find out factors of FSA which effects binding rate. First we refer some related papers and choose 4 kinds of SAMs to coat the surface of silicon dioxide and substrate to compare the binding force. Then we designed and made the equipment to perform the FSA binding trial。
    In the experiment condition, we use the 1mm×1mm SiO2 blocks as small devices and copper and electroplated Sn material as substrate. Tried to observe and find out important factors, which affect the binding rate mostly. Finally we modified coating SAMs methods and improve the trial steps to raise the binding rate.
    The results show that how is important to choose suitable SAM、devices and substrate. And correct coating SAM methods and fluidic flowing field will be other important factors to affect FSA binding rate.
    Keywords: Fluidic self assembly、SAMS、Substrate、Hydrophobic、Hydrophilic、contact angle

    中文摘要 Ⅰ 英文摘要 Ⅲ 誌謝 Ⅳ 目錄 Ⅴ 表目錄 X 圖目錄 XI 第一章 序論 1-1. 前言 1 1-2. 研究動機與目的 1-2-1. 經濟量產上的瓶頸 2 1-2-2. 除重力外對微小元件的影響 2 1-2-3. 流體自我組裝技術的優點 3 1-3.文獻回顧 4 1-3-1. 利用幾何互補性自組裝的方法 5 1-3-2. 自組裝單分子層 (SAM) 的研究 6 1-3-3. 微小元件運載方式之研究 7 1-3-4. 自組裝技術的運用 8 第二章 FSA理論分析 17 2-1. 接觸角的定義 17 2-2. 元件表面塗佈SAM 前的清潔技術 19 2-3. 元件表面改質 19 2-4. 可能影響自我組裝因素的探討 21 2-5. 本文研究FSA之實驗簡述 22 第三章 實驗設備、目的與步驟 30 3-1. 循環組裝實驗設備 3-1-1.丙烯醇類壓克力實驗循環水槽乙座 30 3-1-2.FSA 實驗條件設計 31 3-2-1. Substrate 31 3-2-2. 微小元件1mm*1mm SiO2 31 3-2-3. SAM 31 3-2-4. Reynolds number 的計算 32 3-3.實驗目的: 32 3-3-1.實驗一目的 32 3-3-2 .實驗二目的 32 3-3-3. 實驗三目的 33 3-3-4. 實驗四目的 34 3-4.實驗步驟 34 3-4-1.微小元件取樣方法 34 3-4-2.實驗一步驟 34 3-4-3.實驗二步驟 35 3-4-4.實驗三步驟 36 3-4-4-1. Substrate 塗佈SAM 方式的比較 36 3-4-4-2. 改善實驗設備之整流效果 37 3-4-5.實驗四步驟 37 第四章 實驗結果與討論 4-1. Substrate與微小元件塗佈不同SAM pre-binding狀況 44 4-1-1.Pre-bindinig 實驗結果 44 4-2. 不同SAM pattern 與表面binding rate的關係 45 4-2-1. SAM pattern 為 cross pattern 45 4-2-2. SAM pattern 為 horizontal pattern 47 4-2-3. SAM pattern 為 vertical pattern 49 4-2-4. SAM pattern 為 45度 shape pattern 50 4-3. Binding rate 良率改善實驗 52 4-3-1. SAM 塗佈方式改善 51 4-3-2.改善 binding rate 實驗 54 4-3-3. 實驗結果分析 54 4-3-3-1.SAM pattern 為 horizontal pattern 54 4-3-3-2.SAM pattern 為 vertical pattern 55 4-3-3-3. SAM pattern 為45 度 pattern 56 4-4.驗證模擬實驗 57 第五章 結論與未來研究建議 80 5-1.影響實驗binding rate 的因素 80 5-1-1.整流效應對微小元件載送的影響 80 5-1-2. 微小元件的疏水特性 80 5-1-3. SAM於載體中被稀釋,binding 有時效性限制 81 5-1-4.微小元件、substrate及驗設備材質的選定 81 5-1-5.經濟元件數量及循環組裝次數 82 5-2. 未來研究建議 83 5-2-1. 微小元件、substrate、SAM及工作載體相容性的研究 83 5-2-2. 實驗設備的改善 83 5-2-3. SAM 濃度及塗佈方法研究 83 5-2-4. 微小元件定向binding 的問題 84 參考文獻 85 附錄 94 自述 98

    1. http://www.alientechnology.com/

    2.R. S. Fearing, “Survey of sticking effects for micro parts handling,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Pittsburg, PA, pp. 212–217, 1995.

    3. Nikolas Chronis and Luke P.Lee “Electro thermally Activated SU-8 Micro gripper for Single Cell Manipulation in Solution” Journal of Microelectromechanical system, IEEE, pp.1057-1063. 2005

    4.Kazuhiro Saitou, Dung-Au Wang, Soungjin J. Wou ”Externally Resonated Linear Microvibromotor for Microassembly” Journal of Microelectromechanical systems, Vol. 9, No3, pp. 336-346 September 2000.

    5. J. J. Talghader, J. K. Tu, and J. S. Smith, “Integration of fluidically self-assembled optoelectronic devices using a silicon-based process,” IEEE Photonics Technology Letters, vol. 7, pp. 1321–1323, 1995.

    6. Mila Boncheva, Derek A. Bruzewicz, and George M. Whitesides” Millimeter-scale self-assembly and its applications” Pure Appl. Chem., Vol. 75, No. 5, pp. 621–630, 2003.

    7. R. C. McPhedram, N. A. Nicorovici, D. R. McKenzie, L. C. Botten, A. R. Parker, and G. W. Rouse, “The sea mouse and the photonic crystal,” Australian Journal of Chemistry, vol. 54, pp. 1–4, 2001.

    8. A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature, vol. 385, pp. 321–324, January 1997

    9. B. Gates and Y. Xia, “Photonic crystals that can be addressed with an external magnetic field,” Advanced Material, vol. 13, o. 21, pp. 1605–1608, 2001

    10. H.J.Yeh, J.S. Smith, ”Fluidic Self-Assembly for the Integration of GaAs Light-Emitting Diodes on the Si substrate”, IEEE Photonics Technology Letters, Vol.6, No.6, pp. 706-708. 1994,

    11. Ashish K. Verma, Mark A. Hadley, His-Jen Yeh and J.S. Smith,”Fluidic Self-Assembly of Silicon Microstructures”, IEEE, pp. 1263-1268, 1995

    12. Stephen R. Wasserman, Yu-Tai Tao, and George M.Whitesides “Structure and Reactivity of Alkylsilxane Monolayers Formed by Reaction of Alkyltrichhlorosilanes on Silicon Substrate” American Chemical Society, Langmuir, Vol. 5, No 4, pp.1074-1075, 1989

    13.A. Terfort, N. Bowden, and G. M. Whitesides, “Three-dimensional self-assembly of millimeter-scale components” Nature, Vol. 386, pp. 162–164, March 1996.

    14. J. Tien, T. L. Breen, and G. M. Whitesides, “Crystallization of millimeter-scale objects with use of capillary forces,” Journal of the American Chemical Society, Vol. 120, pp. 12670–12671, 1998

    15. T. L. Breen, J. Tien, S. R. J. Oliver, T. Hadzic, and G. M. Whitesides, “Design and self-assembly of open, regular, 3D microstructures,” Science, Vol. 284, pp. 948–951, May 1999.

    16.Rüdiger Berger, Emmanuel Delamarche, Hans Peter Lang, Christoph Gerber, James K. Gimzewski, Ernst Meyer, Hans-Joachim Güntherodt “ Surface Stress in the Self-Assembly of Alkanethiol on Gold “SCIENCE Vol. 276 p. 27 JUNE, 1997

    17. Hiroaki Onoe, Kiyoshi Matsumoto, and Isao Shimoyama” Three-Dimensional Micro-Self-Assembly Using Hydrophobic Interaction Controlled by Self-Assembly Monolayers” Journal of Micro electromechanical Systems, Vol.13.No.4.August 2004.

    18. A.K. Verma,M.A. Hadly, H.-J. Yen, and J.S. Smith, “Fluidic self-assembly of silicon microstructures,” in proceedings. 45th Electronic Components and Technology Conference, pp. 1263-1268, May 1995.

    19. Sheng-Hsiung Liang, Kerwin Wang, Karl F. Böhringer, "Self-assembly of MEMS Components in Air Assisted by Diaphragm Agitation". IEEE Conference on Micro Electro Mechanical Systems (MEMS), Miami Beach, FL, January 30 - February 3, 2005.

    20. Stefanie Breisch, Bas de Heij, Markus Löhr and Martin Stelzle”Selective chemical surface modification of fluidic Microsystems and characterization studies” Journal of Micromechanics And Microengineering, Vol. 14 pp. 497-505, 2004

    21.X. Xiong, S.H. Liang, and K.F. Böhringer, “Geometric binding site design for surface-tension driven self assembly, ” in Proceeding of the 2004 IEEE International Conference on Robotstics & Automation ,New Orlens, LA, pp. 1141-1148, April ,2004.

    22.Joseph J. Talghader, Jay K. Tu, and J. Stephen Smith ”Integration of Fluidically Self-Assembled Optoelectronic Devices Using a silicon-Based Process”, IEEE, Vol. 7, No11.pp. 1321-1323. November, 1995,

    23.Uthara Srinivasan, Michael A.Helmbrecht, Christian Rembe, Richard S. Muller, ”Fluidic Self-Assembly of Micromirrors Onto Microactuators Using Capillary Forces” IEEE Journal on Selected Topics in Quantum Electronics, Vol. 8, No1, January, 2002

    24. Uthara Srinivasan, Dorian Liepmann, and Roger T. Howe, Fellow ‘’
    Microstructure to Substrate Self-Assembly Using Capillary Forces “IEEE Journal of microelectro mechanical system, Vol. 10, No. 1, March ,2001

    25. Andreas Terfort and George M. White sides ”Self-Assembly of an Operating Electrical Circuit Based on Shape Complementarily and the Hydrophobic Effect” Adv. Mater. pp. 0470~0473 Vol. 10 No. 6, 1998

    26. H Hoffmann, P. W. Stelzle, M. Rabolt, J. F.” Vapor Phase Self-Assembly of Fluorinated Monolayers on Silicon and Germanium Oxide “Langmuir Vol. 13; NUMBER 7, pp. 1877-1880, 1997,

    27. Wenzel, R.N.”Resistance of Solid Surface to Wetting by Water,” Industrial and Engineering Chemistry, Vol. 28, pp.988-994, 1936

    28. .X. Xiong, S.H. Liang, and K.F. Böhringer, “Modeling, Simulation, and Experimentation of a Promising New Packaging Technology: Parallel Fluidic Self-Assembly of Microdevices “University of Washington, Seattle, WA, USA

    29. Jan Lienemann ”Modeling and Simulation of the Fluidic Controlled
    Self-Assembly of Micro Parts” Diploma Thesis Albert Ludwig University
    Freiburg, Germany September 28, 2002

    30.林文宗、呂宗行 “表面改質技術及應用在冷凝熱傳之實驗探討” 國立成功大學航空太空工程學系碩士論文 2005年 7月

    31. Hiroaki Onoe, Kiyoshi Matsumoto, Isao Shimoyama, “3D Micro Self-assembly Using a Hydrophobic Interaction Controlled by SAMs,” 16th IEEE International Micro Electro Mechanical Systems Conference (MEMS '03), Kyoto, Japan, Jan. 19-23, 2003

    32.Uthara Srinivasan, M.Helmbrecht, C.Rembe, R.S. Muller, and R.T. Howe,” Fluidic Self-Assembly of Micromirrors Onto surface Micromachined actuators,” in IEEE/LEOS International Conference on Optical MEMs, pp.59-60 August, 2000

    33.周榮華, 朱俊勳 ”微小元件流體自我組裝技術之研究 (Developing Fluidic Self Assembly Technology for Small Devices) 期末報告”

    34.Stephen R. Wasserman,Yu-Tai Tao, and George M.Whitesides “Structure and Reactivity of Alkylsilxane Monolayers Formed by Reaction of Alkyltrichhlorosilanes on Silicon Substrate” American Chemical Society, Langmuir, Vol. 5, No 4, pp 1074-1075 ,1989

    35.Jiandong Fang, Karl F. Böhringer, "High Yield Batch Packaging of Micro Devices with Uniquely Orienting Self-assembly". IEEE Conference on Micro Electro Mechanical Systems (MEMS), Miami Beach, FL, January 30 - February 3, 2005.

    36.Sheng-Hsiung Liang, Xiaorong Xiong, Karl F. Böhringer, "Towards Optimal Designs for Self-alignment in Surface-tension Driven Micro-assembly." IEEE Conference on Micro Electro Mechanical Systems (MEMS), Maastricht, Holland, January 2004

    37.homas D. Clark, Joe Tien, David C. Duffy, Kateri E. Paul, and George M. Whitesides ”Self-Assembly of 10-um-Sized Objects into Ordered Three-Dimensional Arrays ”,J. Am. Chem. Soc 123,pp. 7677- 7682 ,2001

    38.Morio Takizawa a, Yong-Hoon Kim a, Tsuneo Urisu ” Deposition of DPPC monolayers by the Langmuir–Blodgettmethod on SiO2 surfaces covered by octadecyltrichloro silane self-assembled monolayer islands Chemical Physics Letters 385 pp 220–224, 2004

    39. Benjamin R. Martin, Donna C. Furnange, Thomas N. Jackson, Thomas E. Mallouk, and Theresa S. Mayer” Self-Alignment of Patterned Wafers Using Capillary Force sat a Water-Air Interface” Adv. Funct. Mater. Vol. 11, No. 5, pp.381-386 October 2001

    40.K.Sato, S.Hata and A.Shimokohbe: Self-alignment for Microparts Assembly Using Water Surface Tension, Pro.SPIE, Vol.3892, (1999) 321-329

    41. X. Xiong, K. Wang, and K. F. Böhringer, “From micro-patterns to nano-structures by controllable colloidal aggregation at air-water interface,” in IEEE International Conference on Micro Electro Mechanical Systems (MEMS’04), pp. 621–624, 2004.

    42. Xiong, Y. Hanein, J. Fang, Y. Wang, W. Wang, D. T. Schwartz, and K. F. Böhringer, “Controlled multi batch self-assembly of micro devices,” Journal of Micro electro mechanical Systems, Vol. 12, pp. 117–127, April 2003.

    43. Richard R. A. Syms, Member, IEEE “Surface Tension Powered Self-Assembly of 3-D Micro-Opt mechanical Structures” Journal Of Microelectromechanical Systems, Vol. 8, NO. 4, December 1999

    44. Uthara Srinivasan, Dorian Liepmann, Roger T. Howe, “Microstructure to substrate self-assembly using capillary forces,” J. Microelectromechanical Syst. 10, March 2001.

    45. Elisabeth Smela, Olle Inganas, Ingemar Lundstrom, "Controlled Folding of Micrometer-Size Structures," Science 268 pp. 1735-1738 June 1995

    46. D.H. Gracias, V. Kavthekar, J.C. Love, K.E. Paul, G.M. Whitesides, “Fabrication of micrometer-scale, patterned polyhedral by self-assembly,” Adv. Mater. 14 pp.235-238 February 2002

    47.K. F. Böhringer, R. S. Fearing, K. Y. Goldberg. In The Handbook of Industrial Robotics, S. Nof (Ed.),” pp. 1045–1066, Wiley, New York (1999).

    48.Alien Technology, Morgan Hill, CA, http://www.alientechnology.com/technology/overview.html

    49.B.A. Grzybowski, H.A. Stone, and G.M. Whitesides 2000 Dynamic self-assembly of magnetized, millimeter-sized objects rotating at the liquid-air interface. Nature Vol. 405, pp. 1033-1036.

    50. N Bowden, A Terfort, J Carbeck and GM Whitesides.” Self-assembly of mesoscale objects into ordered two-dimensional arrays.” Science Vol. 276: 233-235, 1997.

    下載圖示 校內:立即公開
    校外:2006-08-09公開
    QR CODE