簡易檢索 / 詳目顯示

研究生: 林詣翔
Lin, Yi-Hsiang
論文名稱: 以溫度操控微米結構繞射效率
Manipulating Diffractions from Periodic Microstructures Using Temperature Variation
指導教授: 陳玉彬
Chen, Yu-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 79
中文關鍵詞: 微米週期結構繞射散射儀溫度
外文關鍵詞: periodic microstructure, diffraction, scattermeter, temperature
相關次數: 點閱:99下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當微米週期結構尺寸接近入射光波長,表面結構會與入射光交互作用進而產生繞射,其中兩個影響繞射方向與強度分布的因素便是材料光學常數與結構形貌。雖然此二者在結構製作後亦同時決定,然而,他們仍可透過溫度變化被同時調變,進而影響繞射效率與繞射角。故本研究將開發一可溫控散射儀平台,以實驗探討並呈現前述現象。所開發儀器樣本溫度範圍為 -75 °C ~ 500 °C、可量測入射角範圍在1° ~ 70°。本文以波長660 nm線性偏振光照射矽一維微米週期結構,成功量測入射角1° ~ 70°時,不同溫度下零階繞射效率;另外也量測入射角0°、30°時,共平面繞射能量之空間分布,結果呈現了繞射效率隨溫度上升而增加,其趨勢與模擬結果相符合,也具體表現溫度對於繞射效率的影響,未來應用包括:非接觸線上檢測週期結構樣本溫度、熱放射器或吸收器設計依據以及利用溫度驅動光學元件等。

    While electromagnetic waves incident on the periodic microstructure, the structure interact with the electromagnetic waves and form the diffractions. The properties of diffractions are effected by the material optical constants and the size of the periodic structure. Although both of these are decided by the production process, they still could be changed by the temperature and effect the diffraction efficiency and diffraction angle of the sample. In order to demonstrate the phenomenon above, we developed a temperature controllable scattermeter, the temperature range is -75~500°C and measurable incident angle is 1~70°. And measure the silicon and gold plate sample to demonstrate the measurement capacity of the scattermeter. In this research, we measure the zeroth order diffractions, normal incident diffractions and oblique incident diffractions of silicon one-dimensional periodic microstructure by 660 nm laser at different temperature. The results demonstrate that the diffraction efficiency increase and the diffraction angle close to the direction of the zeroth order diffraction as the temperature raising. The measurement results are fitted with the simulation results. The applications in the future included non-contact on-line detection of periodic structure temperature, the design basis of thermo-emitter and thermo-absorber, and driving the optical elements by temperature.

    目錄 摘要 i Abstract ii 目錄 ix 表目錄 xii 圖目錄 xiii 符號表 xvii 第 1 章 緒論 1 1.1研究背景 1 1.2研究動機 3 1.3研究目標 4 第 2 章 可溫控散射儀平台開發 6 2.1平台簡介與目標定義 6 2.2溫控平台 10 2.3平台支架 12 2.4量測程式 15 2.4.1原量測程式 15 2.4.2量測程式改良 17 2.5資料擷取收斂性分析 18 2.5.1刪除前段數據 19 2.5.2刪除前段與後段數據 21 第 3 章 儀器性能測試 24 3.1溫控平台 24 3.2角度定位桌校準 28 3.2.1簡化模擬 28 3.2.2窗鏡穿透率 30 3.2.3矽平面反射率 33 3.2.4金平面反射率 36 3.3調變溫度之反射率量測 40 3.3.1標準樣本材料選擇 40 3.3.2單一入射角 42 3.3.3不同入射角 47 第 4 章 結果與討論 50 4.1矽一維週期結構表面形貌 51 4.2 零階繞射效率 53 4.2.1常溫量測 54 4.2.2高溫量測 56 4.2.3低溫量測 58 4.3繞射能量分布 60 4.3.1正向入射 60 4.3.2斜向入射 67 第 5 章 結論與未來工作 71 5.1結論 71 5.2未來工作 72 參考文獻 73

    參考文獻
    [1] Z. Zhang and S. Satpathy, "Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations," Physical Review Letters, vol. 65, pp. 2650-2653, 1990.
    [2] N. Stefanou, V. Karathanos, and A. Modinos, "Scattering of electromagnetic waves by periodic structures," Journal of Physics: Condensed Matter, vol. 4, p. 7389, 1992.
    [3] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Electromagnetic waves: Negative refraction by photonic crystals," Nature, vol. 423, pp. 604-605, 2003.
    [4] C. Gueymard. (2012). Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree; Tilted Surface. Available: http://rredc.nrel.gov/solar/spectra/am1.5/
    [5] P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces: Pergamon P., 1968.
    [6] E. Hecht, Optics: Addison-Wesley, 2002.
    [7] H. Sagberg, M. Lacolle, I. R. Johansen, O. Lvhaugen, R. Belikov, O. Solgaard, et al., "Micromechanical gratings for visible and near-infrared spectroscopy," IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, pp. 604-613, 2004.
    [8] S. Bonora, F. Frassetto, E. Zanchetta, G. Della Giustina, G. Brusatin, and L. Poletto, "Active diffraction gratings: Development and tests," Review of Scientific Instruments, vol. 83, p. 123106, 2012.
    [9] M. Hettrick, "A Single-Element Plane Grating Monochromator," Photonics, vol. 3, p. 3, 2016.
    [10] L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, "Silicon nanowire solar cells," Applied Physics Letters, vol. 91, p. 233117, 2007.
    [11] V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells," Nano Letters, vol. 8, pp. 4391-4397, 2008.
    [12] Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, "ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells," Nano Letters, vol. 8, pp. 1501-1505, 2008.
    [13] R. S. Dubey, S. Saravanan, and S. Kalainathan, "Performance enhancement of thin film silicon solar cells based on distributed Bragg reflector & diffraction grating," AIP Advances, vol. 4, p. 127121, 2014.
    [14] J. Lee and M. Lee, "Diffraction-Grating-Embedded Dye-Sensitized Solar Cells with Good Light Harvesting," Advanced Energy Materials, vol. 4, pp. n/a-n/a, 2014.
    [15] T. Allsop, L. Zhang, and I. Bennion, "Detection of organic aromatic compounds in paraffin by a long-period fiber grating optical sensor with optimized sensitivity," Optics Communications, vol. 191, pp. 181-190, 2001.
    [16] W. Bai and D. A. Spivak, "A Double-Imprinted Diffraction-Grating Sensor Based on a Virus-Responsive Super-Aptamer Hydrogel Derived from an Impure Extract," Angewandte Chemie, vol. 126, pp. 2127-2130, 2014.
    [17] S. Calixto, N. C. Bruce, and M. Rosete-Aguilar, "Diffraction grating-based sensing optofluidic device for measuring the refractive index of liquids," Optics Express, vol. 24, pp. 180-190, 2016.
    [18] T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, "Multiprimary color display for liquid crystal display projectors using diffraction grating," Optical Engineering, vol. 38, pp. 1883-1888, 1999.
    [19] J. Won-Gun, B. Tae Won, C. Hao, P. Jong Rak, H. Seong Jin, L. Young Jin, et al., "Reduction of Viewing-Angle Dependent Color Shift in a Reflective Type Cholesteric Liquid Crystal Color Filter," Applied Physics Express, vol. 1, p. 032001, 2008.
    [20] D. W. Peters, R. R. Boye, J. R. Wendt, R. A. Kellogg, S. A. Kemme, T. R. Carter, et al., "Demonstration of polarization-independent resonant subwavelength grating filter arrays," Optics Letters, vol. 35, pp. 3201-3203, 2010.
    [21] S. Roy, S. Y. Bang, M. F. Modest, and V. S. Stubican, "Measurement of spectral, directional reflectivities of solids at high temperatures between 9 and 11 μm," Applied Optics, vol. 32, pp. 3550-3558, 1993.
    [22] R. B. Zipin, "A Preliminary Investigation of the Bidirectional Spectral Reflectance of V-grooved Surfaces," Applied Optics, vol. 5, pp. 1954-1957, 1966.
    [23] M. Wurm, F. Pilarski, and B. Bodermann, "A new flexible scatterometer for critical dimension metrology," Review of Scientific Instruments, vol. 81, p. 023701, 2010.
    [24] D. R. White, P. Saunders, S. J. Bonsey, J. van de Ven, and H. Edgar, "Reflectometer for measuring the bidirectional reflectance of rough surfaces," Applied Optics, vol. 37, pp. 3450-3454, 1998.
    [25] T. A. Germer and C. C. Asmail, "Goniometric optical scatter instrument for out-of-plane ellipsometry measurements," Review of Scientific Instruments, vol. 70, pp. 3688-3695, 1999.
    [26] L. Belcour, R. Pacanowski, M. Delahaie, A. Laville-Geay, and L. Eupherte, "Bidirectional reflectance distribution function measurements and analysis of retroreflective materials," Journal of the Optical Society of America A, vol. 31, pp. 2561-2572, 2014.
    [27] Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai, "Thermophysical properties of matter - the TPRC data series. Volume 12. Thermal expansion metallic elements and alloys. (Reannouncement). Data book," AD-A-129115/2/XAB, 1975.
    [28] Y. S. Touloukian, R. K. Kirby, E. R. Taylor, and T. Y. R. Lee, "Thermophysical properties of matter - the TPRC data series. Volume 13. Thermal expansion - nonmetallic solids. (Reannouncement). Data book," AD-A-129116/0/XAB, 1977.
    [29] W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, et al., "Controlled ripple texturing of suspended graphene and ultrathin graphite membranes," Nat Nano, vol. 4, pp. 562-566, 2009.
    [30] P. B. Johnson and R. W. Christy, "Optical constants of copper and nickel as a function of temperature," Physical Review B, vol. 11, pp. 1315-1323, 1975.
    [31] A. Beran, "The reflectance behaviour of gold at temperatures up to 500°C," Tschermaks mineralogische und petrographische Mitteilungen, vol. 34, pp. 211-215, 1985.
    [32] G. Vuye, S. Fisson, V. Nguyen Van, Y. Wang, J. Rivory, and F. Abelès, "Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry," Thin Solid Films, vol. 233, pp. 166-170, 1993.
    [33] Y.-B. Chen, I. C. Ho, F.-C. Chiu, and C.-S. Chang, "In-plane scattering patterns from a complex dielectric grating at the normal and oblique incidence," Journal of the Optical Society of America A, vol. 31, pp. 879-885, 2014.
    [34] J. H. Wray and J. T. Neu, "Refractive Index of Several Glasses as a Function of Wavelength and Temperature," Journal of the Optical Society of America, vol. 59, pp. 774-776, 1969.
    [35] P. Winsemius, Temperature dependence of the optical properties of Au and Ag: Drukkerij J.H. Pasmans, 1973.
    [36] L. N. Aksyutov, "Temperature dependence of the optical constants of tungsten and gold," Journal of Applied Spectroscopy, vol. 26, pp. 656-660, 1977.
    [37] R. Society, Philosophical Transactions of the Royal Society of London: The Society, 1815.
    [38] LINKAM SCIENTIFIC Website. Available: http://www.linkam.co.uk/
    [39] J. M. Holt, H. Mindlin, C. Y. Ho, U. Purdue, I. Center for, A. Numerical Data, et al., Structural alloys handbook. West Lafayette, Ind.: CINDAS/Purdue University, 1997.
    [40] 何翌銓, "開發三軸自動光學散射儀並量測微米週期結構之繞射效率," in 國立成功大學機械工程學系碩士論文, ed: 國立成功大學, 2012.
    [41] J. M. Bland and D. G. Altman, "Measurement error," BMJ : British Medical Journal, vol. 312, pp. 1654-1654, 1996.
    [42] E. Hecht and A. Zajac, "Optics Addison-Wesley," Reading, Mass, pp. 301-305, 1974.
    [43] E. D. Palik, Handbook of Optical Constants of Solids: Academic Press, 1998.
    [44] G. Hernandez, Fabry-Perot Interferometers: Cambridge University Press, 1988.
    [45] M. C. Hutley, "Diffraction gratings," Techniques of Physics, London: Academic Press, 1982, vol. 1, 1982.
    [46] E. G. Loewen and E. Popov, Diffraction gratings and applications: CRC Press, 1997.
    [47] M. G. Moharam, T. K. Gaylord, E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," Journal of the Optical Society of America A, vol. 12, pp. 1068-1076, 1995/05/01 1995.
    [48] K. Yokomori, "Dielectric surface-relief gratings with high diffraction efficiency," Applied Optics, vol. 23, pp. 2303-2310, 1984/07/15 1984.
    [49] H. Watanabe, N. Yamada, and M. Okaji, "Linear Thermal Expansion Coefficient of Silicon from 293 to 1000 K," International Journal of Thermophysics, vol. 25, pp. 221-236, 2004.
    [50] Y.-B. Chen, J.-S. Chen, and P.-f. Hsu, "Impacts of geometric modifications on infrared optical responses of metallic slit arrays," Optics Express, vol. 17, pp. 9789-9803, 2009.

    下載圖示 校內:2021-08-16公開
    校外:2021-08-16公開
    QR CODE