簡易檢索 / 詳目顯示

研究生: 薛展立
Hsueh, Chan-Li
論文名稱: 以新穎之覆膜鐵氧化物為異相光助芬頓觸媒 對偶氮染料進行降解之研究
Using Novel Supported Iron Oxides as Heterogeneous Photoassisted Fenton Catalysts for Degradation of Azo Dye
指導教授: 陳志勇
Chen, Chuh-Yung
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 157
中文關鍵詞: 偶氮染料降解光助吸附鐵氧化物芬頓
外文關鍵詞: Adsorption, Photoassisted, Degradation, Azo dye, Fenton, Iron Oxide
相關次數: 點閱:63下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高級氧化程序是利用氫氧自由基(HO‧)的強氧化力來分解水中的有機物,在各種高級氧化程序中,Fenton試劑 (H2O2/Fe2+) 已經被證實是有效且簡單的方法。但是此方法最大的缺點是在反應過程中產生大量的氢氧化鐵污泥,必需進ㄧ步作固液分離及污泥處置。爲了解決此問題,低濃度鐵離子的加藥量在傳統均相(homogeneous) Fenton和Fenton-like 反應中被嘗試。除此之外,以H2O2為氧化劑,以鐵氧化物作為異相(heterogeneous)光助Fenton觸媒的氧化程序值得進ㄧ步研究。
    在均相Fenton和Fenton-like反應中使用低濃度鐵離子的加藥量(≦10 mg l-1)來催化H2O2進而氧化三種商用的偶氮染料,分別是紅色(Red MX-5B)、黑色(Reactive Black 5)和橘色(Orange G)。此實驗結果顯示只要1 mg l-1的鐵離子加藥量下,Fenton和Fenton-like反應兩者皆可以在120分鐘的反應時間下,即可將色度完全移除。然而,在pH 2.5下,使用1 mg l-1 Fe3+和100 mg l-1 H2O2的加藥量,經過反應480分鐘後,總有機碳的移除率對Red MX-5B、Reactive Black 5和Orange G卻分別只有37%、28% 和 31%。上述結果發現,在Fenton-like系統中使用低濃度的鐵離子加藥量對色度的移除方面有很好的效果,但是卻難以礦化偶氮染料。另外,此系統有兩個主要的缺點,第一是此系統必須操作在酸性環境下;第二則是總有機碳的去除率不佳。因此,利用異相的光助Fenton反應觸媒來取代傳統的均相Fenton和 Fenton-like反應並改善上述缺點。
    實驗中所使用的新式活性氧化鋁覆膜鐵氧化物(FeAA-25)是利用流體化床結晶技術所製備的,利用此鐵氧化物作為異相光助Fenton觸媒來降解黑色偶氮染料(RB5)。此觸媒表面的主要成分經分析證實為非結晶型鐵氧化物及α-FeOOH。另外覆膜型FeAA-25的表面特性也ㄧㄧ被研究,包括電子顯微鏡觀察表面型態、表面元素分析、總鐵量、草酸可溶解的鐵量、以及比表面積。在pH值2.5到6.0之間,分別對RB5進行降解研究;實驗結果發現RB5的降解可以分成兩個觀點來討論。一個是由鐵氧化物本身所進行的異相催化;另一個是在酸性環境下,由鐵氧化物表面溶出的鐵離子所造成的均相催化。最後發現在pH值3.5以下,主要是以均相催化為主;在pH值4.0到6.0之間,RB5的氧化主要是由異相催化所貢獻。在此研究中亦發現不論是在以異相或均相催化為主的反應中,加入紫外光後皆可將降解速率提高約20%左右。
    此外;繼續將反應的pH值提高到7.0,並由實驗結果提出一個簡單的RB5分解機制。實驗結果亦顯示在pH值7.0,加入5.0 g FeAA-25/L、29.4 mM H2O2及紫外光下,經過240分鐘的氧化後,0.1 mM的RB5的色度去除率和總有機碳去除率分別可以達到約70%及45%。在此機制中,RB5在FeAA-25上的吸附及脫附行為亦同時被討論。使用FeAA-25做為異相光助Fenton觸媒來降解有機物的優點是可將操作的pH值提高到7.0,但缺點是降解速率緩慢。
    最後,我們希望同時結合均相的光Fenton和異相光助Fenton來對RB5進行降解。爲了降低FeAA-25在酸性環境下的鐵溶出量,我們藉由燒結來改變FeAA-25的表面結構,並使其成為另一個新式的觸媒(FeAA-500)。在pH值2.5下,經過75分鐘的氧化,可將0.1 mM的RB5的色度完全移除,同時總有機碳的移除率亦可達到95%。

    Hydroxyl radical (HO‧) is very reactive, underlying the chemistry of advanced oxation processes (AOPs) for degrading organic compounds in water. Among various AOPs, Fenton’s reagent (H2O2/Fe2+) has been known to be an effective and simple oxidant. The major drawback of Fenton’s reaction is the production of substantial amount of Fe(OH)3 sludge that requires further separation and disposal. To solve this problem, using the low concentration of iron ions in conventional homogeneous Fenton and Fenton-like reaction was attempted. Furthermore, the application of iron oxide as the heterogeneous photoassisted Fenton catalyst in oxidizing organic contaminants deserves an in-depth investigation.
    This study investigated Fenton and Fenton-like reactions at low iron concentration (≦10 mg l-1) to oxidize three commercial azo dyes, namely Red MX-5B, Reactive Black 5 (RB5) and Orange G. This investigation reveals that both of these methods can remove the color of these dyes completely after 120 min of reaction in the presence of only 1 mg l-1 iron concentration. However, only 37%, 28% and 31% TOC of 0.1 mM Red MX-5B, Reactive Black 5 and Orange G can be eliminated after 480 min of reaction in the presence of 1 mg l-1 Fe3+, and 100 mg l-1 H2O2 at pH 2.5. This result is also found that it is easily to decolorize but hardly to mineralize the azo dyes in Fenton-like system at low iron concentration. In addition, this system has two major shortcomings. The first is that the system must be operated at low pH value. The second is that the TOC removal of this system is low. Therefore, heterogeneous catalysts of the photoassisted Fenton reaction instead of conventional homogeneous Fenton and Fenton-like reaction.
    A novel activated alumina-supported iron oxide (denoted as FeAA-25), prepared using a fluidized-bed reactor (FBR), and was utilized as a catalyst of the heterogeneous photoassisted Fenton degradation of azo-dye RB5. The major components coated on the surface were identified as amorphous iron oxide and α-FeOOH. The characteristics of supported FeAA-25 including the particle morphology, surface atomic compositions, total and oxalate-soluble Fe contents and the specific surface area were determined. Photooxidation of RB5 by H2O2 was performed with FeAA-25 in a batch reactor in the range of pH 2.5–6.0. The degradation of RB5 comes from two perspectives. One is the catalysis from the iron oxide (hetergeneous reaction). The other is the catalysis from the Fe ions leaching form the catalyst to solution (homogeneous reaction). Conclusively, although the homogeneous catalysis is primarily below pH 3.5, heterogeneous catalysis contributes increasing importance to the oxidation of RB5 at pH 4.0–6.0. It has been found that the presence of UVA light, both for homogeneous and heterogeneous reactions shows that the efficiency of degradation of RB5 could be raised about 20%.
    Furthermore, a simplified mechanism of RB5 decomposition that is consistent with the experimental findings for a solution with a pH of up to 7.0 is proposed. About 70% decolorization was measured and 45% of the total organic carbon was eliminated on the surface of the iron oxide at pH 7.0 after 240 min in the presence of 0.1 mM RB5, 5.0 g FeAA-25/L, 29.4 mM H2O2, under 15W UVA. In this mechanism, the adsorption and desorption behaviours of RB5 on FeAA-25 were also studied. The advantage of the use of the FeAA-25 as the heterogeneous photoassisted Fenton catalyst is that the degradation up to pH 7.0. However, the degradation rate of the system is slow.
    Finally, we hope to combine the homogeneous photo-Fenton with heterogeneous photoassisted Fenton for degradation of RB5. For reducing the amount of Fe leaching from the FeAA-25 catalyst in an acidic environment, we modify the structure of the FeAA-25 catalyst surface by calcining. After calcining, the FeAA-25 became another novel photo-catalyst (denoted as FeAA-500). The photo-catalytic activity of the FeAA-500 was evaluated in the photooxidative degradation of 0.1 mM RB5 in the presence of H2O2 and UVA light (λ = 365 nm) in a solution with a pH of 2.5. Complete decolorization of the model pollutant RB5 was achieved; the total organic carbon (TOC) removal ratio was 95% after 120 min of reaction.

    LIST OF FIGURES CONTENTS LIST OF FIGURES …………………………………………………………………… VIII LIST OF TABLES …………………………………………………………………… XII CHAPTER 1. INTRODUCTION ……………………………………………………... 1 1.1 Background………………………………...………………………. 1 1.2 Research Objectives………………………………………………… 2 1.3 Organization of Dissertation………………………………………... 2 CHAPTER 2. LITERATURE REVIEW ……………………………………………….. 6 2.1 Fenton reaction……………………………...………………………. 7 2.1.1 Fundamental chemistry of the Fenton reaction……………….. 7 2.1.2 Overview of the earlier work of Fenton reaction……………... 16 2.1.3 Optimum operating conditions of Fenton reaction…………… 21 2.2 The Homogeneous Photo-Fenton (Photoassisted Fenton) Reaction... 24 2.2.1 Fundamental chemistry of the Homogeneous Photo-Fenton reaction………………………………………………………... 25 2.2.2 Overview of the earlier work of Homogeneous Photo-Fenton reaction………………………………………………………... 28 2.3 The Heterogeneous Fenton-Type Catalyst………………………….. 38 CHAPTER 3. EXPERIMENTAL METHODS ……………………………………….... 43 3.1 Material and analytical methods……………………………………. 43 3.1.1 Materials……………………………………..……………….. 43 3.1.2 Analytical methods for the solution…………………………... 43 3.1.3 Analytical methods for iron oxide……………….…………… 45 3.2 Preparation of the heterogeneous iron oxide catalysts…………….... 50 3.2.1 Activated alumina-supported iron oxide…………….………... 50 3.2.2 Converted the FeAA-25 into a new FeAA-500 catalyst….…... 50 3.3 Experimental procedure and equipment specification……………… 51 3.3.1 Fenton and Fenton-like system………………………...……... 51 3.3.2 Evaluating the photo-catalytic activity of the supported iron oxide catalyst…………………………..……………………... 52 3.3.3 Adsorption kinetic, thermodynamic and desorption studies of RB5 on FeAA-25 catalyst…………………………………….. 54 CHAPTER 4. RESULTS AND DISCUSSION ……………………………………….... 55 4.1 Degradation of Azo Dyes using Low Iron Concentration of Fenton and Fenton-like system……………………………………………… 55 4.1.1 Effect of pH…………………………………..……………….. 55 4.1.2 Effect of Fe3+ dose……………………..……………………... 58 4.1.3 Effect of H2O2 dose…………………...………….…………… 60 4.1.4 Mineralization of all three azo dyes………………………… 62 4.1.5 Summary……………………………………………………… 66 4.2 Photooxidation of Azo Dye RB5 by FeAA-25: Heterogeneous and Homogeneous Approach…………………………..…………….... 67 4.2.1 Activated alumina-supported iron oxide…………….………... 67 4.2.2 Converted the FeAA-25 into a new FeAA-500 catalyst….…... 78 4.2.3 Photooxidation of RB5 under different conditions…………… 83 4.2.4 Stability of FeAA-25 catalyst………………………………… 84 4.2.5 Summary……………………………………………………… 84 4.3 Heterogeneous Photooxidation of RB5 over FeAA-25 at Neutral pH…………………………………………………………………… 87 4.3.1 Evaluation of the photo-catalytic activity of the FeAA-25 at neutral pH…………………….………………………...……... 87 4.3.1-1 Degradation of RB5…………………………………. 87 4.3.1-2 Effect of H2O2 molar concentration…….…………… 93 4.3.1-3 Effect of the catalyst loading……………………… 95 4.3.1-4 Effect of the solution pH…………………………… 95 4.3.1-5 Mineralization of RB5………………………………. 98 4.3.1-6 Evidence for generation of radicals………………… 101 4.3.1-7 Mechanism for catalyst as a heterogeneous photoassisted Fenton Reaction………………………. 104 4.3.1-8 Summary…………………………………………….. 105 4.3.2 Adsorption kinetic, thermodynamic and desorption studies of RB5 on FeAA-25……………………………………………... 106 4.3.2-1 Adsorption equilibrium study……………………… 106 4.3.2-2 Adsorption kinetic study…………………………… 113 4.3.2-3 Desorption in response to the pH value…………… 117 4.3.2-4 Repetitive cycles of adsorption and desorption…… 117 4.3.2-5 Summary…………………………………………….. 120 4.4 Photooxidation of Azo Dye RB5 by FeAA-500…………………… 121 4.4.1 Characterization of the FeAA-25 catalyst…………………… 121 4.4.2 Evaluation of the photo-catalytic activity of the FeAA-500 catalyst………………………………………………………... 124 4.4.3 Evidence for generation of radicals………………………… 133 4.4.4 Summary…………………………………………………… 133 CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS …………………….... 135 5.1 Conclusions………………………………………………………… 135 5.2 Recommendations………………………………………………… 137 REFERENCES ……………………………………………………………………….... 139 APPENDIX …………………………………………………………………………….. 151 VITA …………………………………………………………………………………… 154 PUBLICATION LIST ………………………………………………………………….. 155

    Ahmad, S., McCallum, J.D., Shiemke, A.K., Appelman, E.H., Loehr, T.M., and Sanders- Loehr, J., 1988. Raman spectroscopic evidence for side-on binding of peroxide to Fe(III)(edta), Inorg. Chem. 27, 2230–2233.
    Andrianirinaharivelo, S., Mailhot, G., and Bolte, M., 1995. Photodegradation of organic pollutants induced by complexation with transition metals (Fe3+ and Cu2+) present in natural waters, Solar Energy Mater. Solar Cells 38, 459–474.
    Andreozzi, R., Caprio, V., Marotta, R., 2001. Oxidation of benzothiazole, 2-mercaptobenzothiazole and 2-hydroxybenzothiazole in aqueous solution by means of H2O2/UV or photoassisted Fenton systems. J. Chem. Technol. Biotechnol. 76, 196-202.
    APHA, 1995. Standard Methods for the examination of Water and Wastewater, 19th ed. American Public Health Association, Washington, DC.
    Arienzo, M., 1999. Oxidizing 2,4,6-trinitrotoluene with pyrite–H2O2 suspensions, Chemosphere 39, 1629–1638.
    Arslan, I., Balcioglu, I.A., and Tuhkanen, T., 1999. Oxidative treatment of simulated dyehouse effluent by UV and near-UV light assisted Fenton’s reagent. Chemosphere 39, 2767-2783.
    Arslan, I., Balcioglu, I.A., and Bahnemann, D.W., 2000a. Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-FentonyUV-A and TiO2 /UV-A processes. Dyes Pigm. 47, 207-218.
    Arslan, I., Balcioglu, I.A., and Tuhkanen, T., 2000b. Treatability of simulated reactive dye-bath wastewater by photochemical and non-photochemical advanced oxidation processes. J. Environ. Sci. Health. A35, 775-793.
    Arslan, I., Balcioglu, I.A., Tuhkanen, T., Bahnemann, D.W., 2000c. H2O2/UV-C and Fe2+ /H2O2/UV-C vs. TiO2/UV-a treatment for reactive dye wastewater. J. Environ. Eng. 126, 903-911.
    Arslan, I., and Balcioglu, A.I., 2001. Degradation of Remazol black B dye and its simulated dyebath wastewater by advanced oxidation processes in heterogeneous and homogenous media. Color. Technol. 117, 38-42.
    Balanosky, E., Herrera, F., Lopez, A., and Kiwi, J., 2000. Oxidative degradation of textile waste water. Modeling reactor performance, Wat. Res. 34, 582–596.
    Balcioglu, I.A., and Arslan, I., 1999. Treatment of textile industry wastewater by enhanced photocatalytic oxidation reaction, J. Adv. Oxid. Technol. 4, 189-196.
    Balcioglu, I.A., Arslan, I., 2001. Partial oxidation of reactive dyestuffs and synthetic textile dye-bath by the O3 and O3/H2O2 processes, Wat. Sci. Tech. 43 (2), 221-228.
    Balzani, V., and Carassiti, V., 1970. Photochemistry of Coordination Compounds, Academic Press, New York.
    Bandara, J., Morrison, C., Kiwi, J., Pulgarin, C., and Peringer, P.J., 1996. Degradation/ decoloration of concentrated solutions of orange II. Kinetics and quantum yield for sunlight induced reactions via Fenton type reagents, Photochem. Photobiol. A Chem. 99, 57–66.
    Barb, W.G., Baxendale, J.H., George, P., and Hargrave, K.R., 1949. Reactions of ferrous and ferric ions with hydrogen peroxide, Nature 163, 692–694.
    Barb, W.G., Baxendale, J.H., George, P., and Hargrave, K.R., 1951a. Reactions of ferrous and ferric ions with hydrogen peroxide. Part I.—The ferrous ion reaction, Trans. Faraday Soc. 47, 462–500.
    Barb, W.G., Baxendale, J.H., George, P., and Hargrave, K.R., 1951b. Reactions of ferrous and ferric ions with hydrogen peroxide. Part II.—The ferric ion reaction, Trans. Faraday Soc. 47, 591–616.
    Bauer, R., 1999. The photo–Fenton reaction and the TiO2/UV process for waste water treatment–novel developments, Catal. Today 53(1), 131-144.
    Behar, B., and Stein, G., 1986. Photochemical evolution of oxygen from certain aqueous solutions, Science 154, 1012–1013.
    Benitez, F.J., Beltran-Heredia, J., Rea, F., and Acero, J.L., 2000. Phenolic contaminant acids oxidation by Fenton’s reagent, Fresenius Environ. Bull. 9, 144–151.
    Benitez, F.J., Acero, J.L., Real, F.J., Rubio, F.J., and Leal, A.I., 2001a. The role of hydroxyl radicals for the decompositionof p-hydroxy phenylacetic acid in aqueous solutions. Wat. Res. 35, 1338-1343.
    Benitez, F.J., Beltran-Heredia, J., Acero, J.L., and Rubio, F.J., 2001b. Oxidation of several chlorophenolic derivates by UV irradiation and hydroxyl radicals. J. Chem. Technol. Biotechnol. 76, 312-320.
    Benkelberg, H.J., and Warneck, P., 1995. Photodecomposition of iron(III) hydroxo and sulfato complexes in aqueous solution: Wavelength dependence of OH and SO−4 quantum yields, J. Phys. Chem. 99, 5214–5221.
    Bielski, B.H.J., and Cabelli, D.E., 1991. Highlights of current research involving superoxide and perhydroxyl radicals in aqueous solutions, Int. J. Radiat. Biol. 59, 291–319.
    Bigda, R.J., 1995. Consider Fenton’s chemistry for wastewater treatment, Chem. Eng. Prog. 91, 62-66.
    Bishop, D.F., Stern, G., Fleischman, M., and Marshall, L.S., 1968. Hydrogen peroxide catalytic oxidation of refractory municipal waste waters, I&EC Proc. Design Dev. 7, 110–117.
    Bossmann, S.H., Oliveros, E., Goeb, S., Kantor, M., Goeppert, A., Braun, A.M., Lei, L., and Yue, P.L., 2001a. Oxidative degradation of polyvinyl alcohol by the photochemically enhanced Fenton Reaction. Evidence for the formation of supermacromolecules, Prog. Reaction Kin. Mech 26, 113–137.
    Bossmann, S.H., Oliveros, E., Goeb, S., Kantor, M., Goeppert, A., Lei, L., Yue, P.L., and Braun, A.M., 2001b. Degradation of polyvinylalcohol (PVA) by homogeneous and heterogeneous catalysis applied to the photochemically enhanced Fenton reaction, Wat. Sci. Technol. 44, 257–262.
    Bossmann, S.H., Oliveros, E., Goeb, S., Siegwart, S., Dahlen, E.P., Pavayan, L., Jr., Straub, M., WÖrner, M., and Braun, A.M., 1998. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reaction, J. Phys. Chem. A 102, 5542–5550.
    Bossmann, S.H., Thanh, H.L., Shahin, N., Bonfill, A., Woerner, M., and Braun, A.M., 2002. Fe(bpy) /TiO2-codoped zeolites: Synthesis, characterization, and first application in photocatalysis, Chem. Phys. Phys. Chem 3, 401–407.
    Brand, N., Mailhot, G., and Bolte, M., 1998. Degradation photoinduced by Fe(III): Method of alkylphenolethoxylates removal in water, Environ. Sci. Technol. 32, 2715–2720.
    Brand, N., Mailhot, G., and Bolte, M., 2000a. The interaction “light, Fe(III)” as a tool for pollutant removal in aqueous solution: Degradation of alcohol ethoxylates, Chemosphere 40, 395–401.
    Brand, N., Mailhot, G., Sarakha, M., and Bolte, M., 2000b. Primary mechanism in the degradation of 4-octylphenol photoinduced by Fe(III) in water-acetonitrile solution, J. Photochem. Photobiol. A Chem. 135, 221–228.
    Braun, A.M., Maurette, M.-T., and Oliveros, E., 1991. Photochemical Technology, Wiley & Sons, New York, 77–81.
    Buxton, G.V., Greenstock, C.L., Helman, W.P., and Ross, A.B., 1998. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O−) in aqueous solutions, J. Phys. Chem. Ref. Data 17, 513–886.
    Catrinescu, C., Teodosiu, C., Macoveanu, M., Miehe-Brendlé, J., and Le Dred, R., 2003. Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite, Wat. Res. 37, 1154–1160.
    Chang, M.-C., Shu, H.-Y., and Huang, C.-R., 2001. Effect of Fenton’s reagents on phenanthrene destruction in sandy soil. Presented at 6th World Congress of Chem.Eng. Melbourne, Australia, 23–27 September, 2001.
    Chen, R., and Pignatello, J.J., 1997. Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds, Environ. Sci. Technol. 31, 2399–2406.
    Chiron, N., Guilet, R., Deydier, E., 2003. Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models, Wat. Res. 37, 3079-3086.
    Chou, S., Huang, C., and Huang, Y.H., 1999a. Effect of Fe2+ on catalytic oxidation in a fluidized bed reactor. Chemosphere, 39(12), 1997–2006.
    Chou, S., and Huang, C.P., 1999b. Decomposition of hydrogen peroxide in a catalytic fluidized-bed reactor, Appl. Catal. A: General. 185, 237-245.
    Christensen, H., Sehested, K., and Løgager, T., 1993. The reaction of hydrogen peroxide with Fe(II) ions at elevated temperatures, Radiat. Phys. Chem. 41, 575–578.
    Cornell, R.M., and Schwertmann, U., 2003. The Iron Oxides. Wiley-VCH, New York.
    De Laat, J., and Gallard, H., 1999. Catalytic decomposition of hydrogen peroxide by Fe(III) in homogenerous aqueous solution: Mechanism and kinetic modeling, Environ. Sci. Technol. 33, 2726–2732.
    Dhananjeyan, M.R., Kiwi, J., Albers, P., and Enea, O., 2001. Photo-assisted immobilized Fenton degradation up to pH 8 of azo dye orange II mediated by Fe3+/Nafion/glass fibers, Helvet. Chim. Acta 84, 3433–3445.
    Eisenhauer, H.R., 1964. Oxidation of phenolic wastes, J. Wat. Pollut. Contr. Fed. 36, 1116–1128.
    Engwall, M.A., Pignatello, J.J., and Grasso, D., 1999. Degradation and detoxification of the wood preservatives creosote and pentachlorophenol in water by the photo-Fenton reaction. Wat. Res. 33, 1151-1158.
    Evans, M.G., George, P., and Uri, N., 1949. The [Fe(OH)]+2 and [Fe(O2H)]+2 complexes, Trans. Faraday Soc. 34, 230–234.
    Fallmann, H., Krutzler, T., Bauer, R., Malato, S., Blanco, J., 1999. Applicability of the photo-Fenton method for treating water containing pesticides. Catal. Today 54 (2–3), 309-319.
    Faust, B.C., and Hoigné, J., 1990. Photolysis of Fe(III)-hydroxyl complexes as sources of OH radicals in clouds, fog, and rain, Atmos. Environ. 24A, 79–89.
    Feng, J., Hu, X., Yue, P.L., Zhu, H.Y., and Lu, G.Q., 2003. A novel laponite clay-based Fe nanocomposite and its photo-catalytic activity in photo-assisted degradation of orange II, Chem. Eng. Sci. 58, 679–685.
    Fenton, H.J., 1894. Oxidation of tartaric acid in presence of iron, J. Chem. Soc. 65, 899–910.
    Fernandez, J., Bandara, J., Lopez, A., Buffat, P., and Kiwi, J., 1999. Photoassisted Fenton degradation of nonbiodegradable azo dye (orange II) in Fe-free solutions mediated by cation transfer membranes, Langmuir 15, 185–192.
    Fernandez, J., Djananjeyan, M.R., Kiwi, J., Senuma, Y., Hilborn, J., 2000. Evidence for Fenton Photoassisted Processes Mediated by Encapsulated Fe ions at Biocompatible pH Values , J. Phys. Chem. B 104, 5298-5301.
    Feuerstein, W., Gilbert, E., and Eberle, S.H., 1981. Modellversuche zur Oxidation aromatischer Verbindungen mittels Wasserstoffperoxid in der Abwasserbehandlung, VomWasser, 56 35–54.
    Francis, K.C., Cummins, D., and Oakes, J., 1985. Kinetic and structural investigations of [Fe(III)(edta)]-[edta = ethylenediaminetetraacetate(4-)] catalysed decomposition of hydrogen peroxide, J. Chem. Soc. Dalton Trans. 493–501.
    Fukushima, M., Tatsumi, M., and Morimoto, K., 2000. The fate of aniline after a photo-Fenton reaction in an aqueous system containing Iron (III), humic acid and hydrogen peroxide. Environ. Sci. Technol. 34, 2006-2013.
    Gallard, H., and De Laat, J., 2000. Kinetic modelling of Fe(III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound, Wat. Res. 34, 3107–3116.
    Gallard, H., de Laat, J., and Legube, B., 1998. Influence du pH sur la vitesse d’oxydation de composés organiques par FeII/H2O2: Mécanismes réactionnels et modélisation, N. J. Chem. 22, 263–268.
    Gallard, H., De Laat, J., and Legube, B., 1999. Spectrophotometric study of the formation of iron(III)–hydroperoxy complexes in homogeneous aqueous solutions, Wat. Res. 33, 2929–2936.
    Gogate, P.R., Pandit, A.B., 2004. A review of imperative technologies for wastewater treatment II: hybrid methods. Adv. Environ. Res. 8, 553-597.
    Goldstein, S., Meyerstein, D., and Czapski, G., 1993. The Fenton reagents, Free Radical Biol. Med. 15, 435–445.
    Graf, E., Mahoney, J.R., Bryant, R.G., and Eaton, J.W., 1984. Iron-catalyzed hydroxyl radical formation, J. Biol. Chem. 259, 3620–3624.
    Haber, F., and Weiss, J., 1934. The catalytic decomposition of hydrogen peroxide by iron salts, Proc. Roy. Soc. A. 134, 332–351.
    Hatchard, C.G., and Parker, C.A., 1956. A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer, Proc. Roy. Soc. A235, 518–536.
    Heredia, J.B., Benitez, F.J., Gonzalez, T., Acero, J.L., and Rodriguez, B., 1996. Photocatalytic decomposition of bentazone, J. Chem. Tech. Biotech. 66, 206-212.
    Hislop, K.A., and Bolton, J.R., 1999. The photochemical generation of hydroxyl radicals in the UV-vis/ferrioxalate/H2O2 System, Environ. Sci. Technol. 33, 3119–3126.
    Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes, Process Biochem. 34, 451-465.
    Hsueh, C.L., Huang, Y.H., Wang, C.C. and Chen, C.Y., 2005. Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system, Chemosphere 58, 1409-1414.
    Huang, Y.H., Huang, G.H., Chou, S., You, H.S., and Perng, S.H., 1998. Process for chemically oxidizing wastewater with reduced sludge production, A pending ROC patent 87106787, ITRT/Union Chemical Laboratories.
    Hundal, L., Singh, J., Bier, E.L., Shea, P.J., Comfort, S.D., and Powers, W.L., 1997. Removal of TNT and RDX from water and soil using iron metal, Environ. Pollut. 97, 55–64.
    Huston, P.L., and Pignatello, J.J., 1996. Reduction of perchloroalkanes by ferrioxalategenerated carboxylate radical preceding mineralization by the photo-Fenton reaction, Environ. Sci. Technol. 30, 3457–3463.
    Huston, P.L., and Pignatello, J.J., 1999. Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction, Wat. Res. 33, 1238-1246.
    Ito, K., Jian, W., Nishijima, W., Baes, A.U., Shoto, E., and Okada, M., 1998. Comparison of ozonation and AOPS combined with biodegradation for removal of THM precursors in treated sewage effluents, Wat. Sci. Technol. 33, 179-186.
    Iwahashi, H., Ishii, T., Sugata, R., and Kido, R., 1990. The effects of caffeic acid and its related catechols on hydroxyl radical formation by 3-hydroxyanthranilic acid, ferric chloride, and hydrogen peroxide, Arch. Biochem. Biophys. 276, 242–247.
    Joo, S.H., Feitz, A.J., Sedlak, D.L., and Waite, T.D., 2005. Quantification of the oxidizing capacity of nanoparticulate zero-valent iron, Environ. Sci. Technol. 39, 1263–1268.
    Kang, Y.W., and Hwang, K.-Y., 2000. Effects of reaction conditions on the oxidation efficiency in the Fenton process, Wat. Res. 10, 2786–2790.
    Kawaguchi, H., and Inagaki, A., 1994. Kinetics of ferric ion promoted photodecomposition of 2-chlorophenol, Chemosphere 28, 57–62.
    Kim, S.-M., and Vogelpohl, A., 1998. Degradation of organic pollutants by the photo-Fenton process. Chem. Eng. Technol. 21, 187-191.
    Kitis, M., Adams, C.D., and Daigger, G.T., 1999. The effects of Fenton’s reagent pre-treatment on the biodegradability of non-ionic surfactants. Wat. Res. 33, 2561-2568.
    Kiwi, J., Denisov, N., Gak, Y., Ovanesyan, N., Buffat, P., Suvorova, E., Gostev, F., Titov, A., Albers, P., and Nadtochenko, V., 2002. Catalytic Fe3+ clusters and complexes in Nafion active in photo-Fenton processes. High-resolution electron microscopy and femtosecond studies, Langmuir 18, 9054–9066.
    Kiwi, J., Pulgarin, C., Peringer, P., 1994. Effect of Fenton and photo-Fenton reactions on the degradation and biodegradability of 2 and 4-nitrophenols in water treatment. Appl. Catal. B: Environ. 3, 335-350.
    Koch, M., Yediler, A., Lienert, D., Insel, G., and Kettrup, A., 2002. Ozonation of hydrolyzed azo dye reactive yellow 84 (CI), Chemosphere 46, 109–113.
    Kong, S.-H., Watts, R., and Choi, J.-H., 1998. Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide, Chemosphere 37, 1473–1482.
    Koppenol, W.H., Butler, J., and van Leeuwen, J.W., 1978. The Haber–Weiss cycle, Photochem. Photobiol. 28, 655–660.
    Krutzler, T., and Bauer, R., 1999. Optimization of a photo-Fenton prototype reactor. Chemosphere 38, 2517-2532.
    Kuo, W.G., 1992. Decolorizing dye wastewater with Fenton’s reagent, Wat. Res. 26, 881–886.
    Kwon, B.G., Lee, D.S., Kang, N., and Yoon, J., 1999. Characteristics of p-chlorophenol oxidation by Fenton’s reagent. Wat. Res. 33, 2110-2118.
    Langford C.H., and Carey, J.H., 1975. The charge transfer photochemistry of the hexaaquoiron(III) ion, the chloropentaaquoiron(III) ion, and the µ-dihydroxy dimer explored with tert-butyl alcohol scavenger, Can. J. Chem. 53, 2430–2435.
    Lagergren, S., 1998. Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenkapsakademiens, handlingar 24, 1–39.
    Larson, R.A., Schlauch, M.B., and Marley, K.A., 1991. Ferric ions promoted photodecomposition of triazines, J. Agric. Food Chem. 39, 2057–2062.
    Li, Z.M., Peterson, M.M., Comfort, S.D., Horst, G.L., Shea, P.L., and Oh, B.T., 1997a. Remediating TNT-contaminated soil by soil washing and Fenton oxidation, Sci. Total Environ. 204, 107–115.
    Li, Z.M., Shea, P.J., and Comfort, S.D., 1997b. Fenton oxidation of 2,4,6-trinitrotoluene in contaminated soil slurries, Environ. Eng. Sci. 14, 55–66.
    Li, Z.M., Shea, P.J., and Comfort, S.D., 1998. Nitrotoluene destruction by UV-catalyzed Fenton oxidation, Chemosphere 36, 1849-1865.
    Li, Y.S., Liu, C.C., and Fang, Y.Y., 1999. Decolorization of dye wastewater by hydrogen peroxide in the presence of basic oxygen furnace slag, J. Environ. Sci. Health A 34, 1205–1221.
    Li, Y.H., Di, Z., Ding, J., Wu, D., Luan, Z., Zhu, Y., 2005. Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes, Wat. Res. 39, 605-609.
    Lin, S.H., and Peng, C.F., 1995. Treatment of textile wastewater by Fenton’s reagent, J. Environ. Sci. Health A 30, 89-98.
    Lin, S.H., and Lo, C.C., 1997. Fenton process for treatment of desizing wastewater. Wat. Res. 31, 2050-2056.
    Lin, S.H., Lin, C.M., and Leu, H.G., 1999. Operating characterisitics and kinetic studies of surfactant wastewater treatment by Fenton oxidation, Wat. Res. 33, 1735–1741.
    Lin, S., and Gurol, M.D., 1998. Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide: Kinetics, Mechanism, and Implications, Environ. Sci. Technol. 32, 1417-1423.
    Lipczynska-Kochany, E., 1991. Novel method for a photocatalytic degradation of 4-nitrophenol in homogenous aqueous solution. Environ. Technol. 12, 87-97.
    Lipczynska-Kochany, E., 1992. Degradation of nitrobenzene and nitrophenols in the homogenous aqueous solution: direct photolysis vs. photolysis in the presence of hydrogen peroxide and the Fenton reagent. Wat. Pollut. Res. J. Can. 27, 97-122.
    Lei, L., Hu, X., Yue, P.L., Bossmann, S.H., Göb, S., and Braun, A.M., 1998. Oxidative degradation of polyvinyl alcohol by the photochemically enhanced Fenton reaction, J. Photochem. Photobiol. A Chem. 116, 159–166.
    Lewis, T.J., Richards, D.H., and Salter, D.A., 1963. Peroxy-complexes of inorganic ions in hydrogen peroxide–water mixtures. Part I. Decomposition by ferric ions, J. Chem. Soc. 2434–2446.
    Lu, M.C., 2000. Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite, Chemosphere 40, 125–130.
    Lucking, F., Koser, H., Jank, M., and Ritter, A., 1998. Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution, Wat. Res. 32, 2607–2614.
    Mailhot, G., Astruc, M., and Bolte, M., 1999. Degradation of tributyltin chloride in water photoinduced by iron(III), Organomet. Chem. 13, 53–61.
    Maletzky, P., and Bauer, R., 1998. The photo–Fenton method–degradation of nitrogen containing organic compounds, Chemosphere 37(5), 899-909.
    Maletzky, P., Bauer, R., Lahnsteiner, J., and Pouresmael, B., 1999. Immobilization of iron ions on Nafion® and its applicability to the photo–Fenton method. Chemosphere 38(10), 2315-2325.
    Masarwa, M., Cohen, H., Meyerstein, D., Hickman, D.L., Bakac, A., and Espensen, J.H., 1988. Reactions of low-valent transition-metal complexes with hydrogen peroxide. Are they “Fenton-like” or not ? 1. The case of Cu+aq and Cr2+aq , J. Am. Chem. Soc. 110, 4293–4297.
    Mazellier, P., Mailhot, G., and Bolte, M., 1997. Photochemical behavior of the iron(III)/2,6- dimethylphenol system, N. J. Chem. 21, 389–397.
    Mazellier, P., Sarakha, M., and Bolte, M., 1998. Primary mechanism for the Iron (III) photo-induced degradation of 4-chlorophenol in aqueous solution, New. J. Chem. 133.
    Mazellier, P., Sarakha, M., and Bolte, M., 1999. Primary mechanism for the iron(III) photoinduced degradation of 4-chlorophenol in aqueous solution, N. J. Chem. 23, 133–135.
    Mazellier, P., and Sulzberger, B., 2001. Diuron degradation in irradiated, heterogeneous iron/oxalate systems: The rate-determining step, Environ. Sci. Technol. 35, 3314–3320.
    Misawa, T., Asami, K., Hashimoto, K., and Shimodaira, S., 1974. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel, Corrosion Science 14, 279-289.
    Nadtochenko, V., and Kiwi, J., 1998a. Primary photochemical reactions in the photo-Fenton system with ferric chloride 1. a case study of xylidine oxidation as a model compound. Environ. Sci. Technol. 32, 3273-3281.
    Nadtochenko, V., and Kiwi, J., 1998b. Photoinduced mineralization of xylidine by the Fenton reagent 2. implications of the precursors formed in the dark. Environ. Sci. Technol. 32, 3282-3285.
    Neamtu, M., Catrinescu, C., and Kettrup, A., 2004. Effect of dealumination of iron(III)—exchanged Y zeolites on oxidation of Reactive Yellow 84 azo dye in the presence of hydrogen peroxide, Appl. Catal. B: Environ. 51, 149–157.
    Neamtu, M., Siminiceanu, I., and Kettrup, A., 2002. Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H2O2 oxidation, Dyes Pigments 53, 93–99.
    Nesheiwat, F.K., and Swanson, A.G., 2000. Clean contaminated sites using Fenton’s reagent. Chem. Eng. Prog. 96 (4), 61-66.
    Niwas, R., Gupta, U., Khan, A.A., Varshney, K.G., 2000. The adsorption of phosphamidon on the surface of styrene supported zirconium tungstophophate: a thermodynamic study, Colloid. Surf. A: Physicochem. Eng. Aspects 164, 115–119.
    Nogueira, R.F.P., and Cuimaraes, J.R., 2000. Photodegradation of dichloroacetic acid and 2-4 dichlorophenol by Ferrioxalate/H2O2 system, Wat. Res. 34, 895-901.
    Nyquist, R.A., and Kagel, R.A, 1971. IR Spectra of Inorganic Compounds, Academic Press, New York.
    Park, J.S.B., Wood, P.M., Gilbert, B.C., and Whitwood, A.C., 1997. A kinetic and ESR investigation of iron(II) oxalate oxidation by hydrogen peroxide and dioxygen as a source of hydroxy radicals, Free Radical Res. 27, 447–458.
    Park, T.J., Lee, K.H., Jung, E.J., and Kim, C.W., 1999. Removal of refractory organics and color in pigment wastewater with Fenton oxidation, Wat. Sci. Technol. 39 (10–11), 189-192.
    Pignatello, J.J., and Chapa, G., 1994. Degradation of PCBs by ferric ion, hydrogen peroxide and UV light, Environ. Toxicol. Chem. 13, 423-427.
    Pignatello, J., 1992. Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide, Environ. Sci. Technol. 26, 944–951.
    Pignatello, J.J., Huang, L.Q., 1993. Degradation of polychlorinated dibenzo-p-dioxin and dibenzofuran contaminants in 2,4,5 T by photo-assisted iron-catalyzed hydrogen peroxide. Wat. Res. 27, 1731-1736.
    Pignatello, J.J., Liu, D., and Huston, P., 1999. Evidence for an additional oxidant in the photoassisted Fenton reaction, Environ. Sci. Technol. 33, 1832–1839.
    Pignatello, J.J., Oliveros E., Mackay, A., 2006. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Crit. Rev. Environ. Sci. Technol. 36, 1-84.
    Pignatello, J.J., Sun, Y., 1995. Complete oxidation of metachlor and methyl parathion in water by the photo-assisted Fenton reaction. Wat. Res. 29, 1837-1844.
    Pohl, K., Wieghardt, K., Kaim, W., and Steenken, S., 1988. Redox reactivity of bis(1,4,7-triazacyclononane)iron(II/III) complexes in alkaline solution and characterization of a deprotonated species: Amidoiron(III) vs aminyliron(II) ground-state formulation. EPR, kinetic, pulse radiolysis, and laser photolysis study, Inorg. Chem. 27, 440–447.
    Potter, F.J., and Roth, J.A., 1993. Oxidation of chlorinated phenols using Fenton’s reagent, Hazard. Waste Hazard. Mater. 10, 151-170.
    Rahhal, S., and Richter, H. W., 1988. Reduction of hydrogen peroxide by the ferrous iron chelate of diethylenetriamine-N,N,N',N",N"-pentaacetate, J. Am. Chem. Soc. 110, 3126–3133.
    Rigg, T., Taylor, W., and Weiss, J., 1954. The rate constant of the reaction between hydrogen peroxide and ferrous ions, J. Chem. Phys. 22, 575–577.
    Rios-Enriquez, M.A., Shahin, N., Durán-de-Bazúa, C., Lang, J., Oliveros, E., Bossmann, S.H., and Braun, A.M., 2004. Optimization of the heterogeneous Fentonoxidation of the model pollutant 2,4-xylidine using the experimental design methodology, Solar Energy 77, 491–501.
    Rivas, F.J., Beltran, F.J., Frades, J., and Buzeda, P., 2001. Oxidation of p-hydroxybenzoic acid by Fenton’s reagent. Wat. Res. 35, 387-393.
    Roland, S., Ingbert, S., and Hans-Henning, S., 1997. Fluorometric determination of low concentrations of H2O2 in water: Comparison with two other methods and application to environmental samples and drinking-water treatment, Wat. Res. 31, 1371–1378.
    Ronco, S.E., and Aymonino, P.J., 1987. Kinetics of the thermal and photochemical decomposition of aquapentacyanoferrate(III) in aqueous solution, Transition Met. Chem. 12, 174–178.
    Ruppert, G., Bauer, R., and Heisler, G., 1993. The photo-Fenton reaction—an effective photochemical wastewater treatment process, J. Photochem. Photobiol. A Chem. 73, 75–78.
    Rush, J.D., and Bielski, B.H.J., 1986. Pulse radiolysis of alkaline Fe(III) and Fe(IV) solutions. Observation of transient iron complexes with intermediate oxidation states, J. Am. Chem. Soc. 108, 523–525.
    Sabhi, S., and Kiwi, J., 2001. Degradation of 2,4-dichlorophenol by immobilized iron catalysts, Wat. Res. 35, 1994–2002.
    Safarzadeh-Amiri, A., Bolton, J. R., and Cater, J. R., 1997. Ferrioxalate-mediated photodegradaation of organic pollutants in contaminated water, Wat. Res. 31, 787–798.
    Safarzadeh-Amiri, A., Bolton, J.R., and Cater, S.R., 1996. The use of iron in advanced oxidation technologies, J. Adv. Oxid. Technol. 1, 18–26.
    Sawyer, D.T., and Valentine, J.S., 1981. How super is superoxide, Acc. Chem. Res. 14, 393–400.
    Schwertmann, U., and Cornell, R.M., 1991. Iron Oxides in the Laboratory: Preparation and Characterization, VCH, Weinheim/New York/Basel/Cambridge.
    Sedlak, D.L., and Andren, A.W., 1991. Oxidation of chlorobenzene with Fenton’s reagent. Environ. Sci. Technol. 25, 777-782.
    Seida, Y., Nishimura, K., Nakano, Y., 2001. Decomposition of chlorophenols in water by high energy UV. resented at 6th World Congress of Chemical Engineering, Melbourne, Australia, September 2001.
    Sevimli, M.F., and Kinacl, C., 2002. Decolorization of textile wastewater by ozonation and Fenton’s process, Wat. Sci. Technol. 45, 279-286.
    Sheng, H.L., and Cho, C.L., 1997. Fenton process for treatment of desizing wastewater, Wat. Res. 31, 2050-2056.
    Sima, J., and Makanova, J., 1997. Photochemistry of iron(III) complexes, Coord. Chem. Rev. 160, 161–189.
    Skoog, D.A., and Leary, J.J., 1992. Principles of Instrumental Analysis, 4th ed., Harcourt Brace College Publishers, New York, pp. 252-309.
    Stalikas, C.D., Lunar, L., and Rubio, S., Perez-Dendito, D., 2001. Degradation of medical X-ray film developing wastewaters by advanced oxidation processes. Wat. Res. 35, 3845-3856.
    Stratmann, N. and Hoffmann K., 1989. In situ Mössbauer spectroscopic study of reactions within rust layers, Corros Sci. 12, 1329-1352.
    Stumm, W., 1992. Chemistry of the Solid-Water Interface, Wiley-Interscience, New York.
    Sun, Y., and Pignatello, J.J., 1993a. Organic intermediates in the degradation of 2,4-dichlorophenoxyacetic acid by Fe3+/H2O2 and Fe3+/H2O2/UV, J. Agric. Food Chem. 41, 1139–1142.
    Sun, Y., and Pignatello, J.J., 1993b. Photochemical reactions involved in the total mineralization of 2,4-D by Fe3+/H2O2/UV, Environ. Sci. Technol. 27, 304–310.
    Sylva, R.N., 1972. The hydrolysis of iron(III). Rev. Pure Appl. Chem. 22, 115–130.
    Szulbinski, W.S., 2000. Fenton reaction of iron chelates involving polyazacyclononane. The ligand structure effect, Polish J. Chem. 74, 109–124.
    Takemura, Y., Seno-o, K., Mukai, T., and Suzzuki, M., 1994. Decomposing organic chlorine compounds in dry cleaning wastewater by Fenton’s reaction on recticulated iron, Wat. Sci. Technol. 30, 129–137.
    Tang, W.Z., and Chen, R.Z., 1996. Decolorization kinetics and mechanisms of commercial dyes by H2O2/iron powder system, Chemosphere 32, 947–958.
    Tang, W.Z., and Tassos, S., 1997. Oxidation kinetics and mechanisms of trihalomethanes by Fenton’s reagent, Wat. Res. 5, 1117–1125.
    Tarr, M.A., 2003. Chemical degradation methods for wastes and pollutants. In Environmental Science and Pollution Control Series, Vol. 26 (Chemical Degradation Methods for Wastes and Pollutants), 165–200.
    Urano, K. and Tachikawa, H., 1991. Process development for the removal and recovery of phosphorus from wastewater by a new adsorbent – 2 Adsorption rates and breakthrough curves, Ind. Eng. Chem. Res. 30, 1897–1899.
    Van der Zee, J., Krootjes, B.B.H., Chignell, C.F., Dubbelman, T.M.A.R., and Van Steveninck, J., 1993. Hydroxyl radical generation by a light dependent Fenton reaction, Free Radical Biol. Med. 14, 105–113.
    Venkatadri, R., and Peters, R.V., 1993. Chemical oxidation technologies: ultraviolet light/hydrogen peroxide, Fenton’s reagent and titanium dioxide assisted photocatalysis. Hazard. Waste Hazard. Mater. 10, 107-150.
    Voelker, B.M., and Sulzberger, B., 1996. Effects of fulvic acid on Fe(II) oxidation by hydrogenmperoxide, Environ. Sci. Technol. 30, 1106–1114.
    Von Sonntag, C., and Schuchmann, H.P., 1997. Peroxyl radicals in aqueous solutions, In Peroxyl Radicals, Z. B. Alfassi, ed., John Wiley and Sons, New York, 173–234,
    Wagner, R., and Ruck, W., 1984. Determination of hydrogen peroxide and other peroxo compounds, Z. Wasser-Abwasser-Forsch. 17, 262-267.
    Walling, C., 1975. Fenton’s reagent revisited, Acc. Chem. Res. 8, 125-131.
    Walling, C., and Goosen, A., 1973. Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates, J. Am. Chem. Soc. 95, 2987.
    Walling, C., and Kato, S.I., 1971. The oxidation of alcohols by Fenton s reagent. The effect of copper ion, J. Am. Chem. Soc. 93, 4275–4281.
    Walling, C., Kurz, M., and Schugar, H.J., 1970. The iron(III)-ethylenediaminetetraacetic acid– peroxide system, Inorg. Chem. 9, 931–937.
    Wang, Y., and Hong, C.-S., 1999. Effect of hydrogen peroxide, periodate and persulfate on photocatalysis of 2-chlorobiphenyl in aqueous TiO2 suspensions, Wat. Res. 33 (9), 2031-2036.
    Watts, R.J., Sundstrom, E.H., and Klei, H.H., 1990. Treatment of pentachlorophenol contaminated soil using Fenton’s reagent, Hazard. Waste Hazard. Mater. 4, 335-345.
    Watts, R.J., and Dilly, S.E., 1996. Evaluation of iron catalysts for the Fenton-like remediation of diesel-contaminated soils, J. Haz. Mater. 51, 209-224.
    Watts, R.J., Jones, A.P., Chen, P.H., and Kenny, A., 1997. Mineralcatalyzed Fenton-like oxidation of sorbed chlorobenzenes, Wat. Environ. Res. 69, 269-275.
    Weber, W. J. and Morris, J. C., 1963. Kinetics of adsorption on carbon from solutions, J. Sanit. Eng. Div. Am. Soc. Ccv. Engrs. 89, 31–39.
    Wells, C.F., and Salam, M.A., 1965. Hydrolysis of ferrous ions: A kinetic method for determination of the Fe(II) species, Nature 205, 690–692.
    Wells, C.F., and Salam, M.A., 1967. Complex formation between iron(II) and inorganic anions. Part I. Effect of simple and complex halide ions on the reaction of Fe(II) + H2O2 reaction, Trans. Faraday Soc. 63, 620–629.
    Wells, C.F., and Salam, M.A., 1968a. The effect of pH on the kinetics of the reaction of iron(II) with hydrogen peroxide in perchlorate media, J. Chem. Soc. A 24–29.
    Wells, C.F., and Salam, M.A., 1968b. Complex formation between iron(II) and inorganic anions. Part II. The effect of oxyanions on the reaction of iron(II) with hydrogen peroxide, J. Chem. Soc. A 308–315.
    Wilson, C.L., Hinman, N.W., Cooper, W.J., and Brown, C.F., 2000. Hydrogen Peroxide Cycling in Surface Geothermal Waters of Yellowstone National Park, Environ. Sci. Technol. 34, 2655-2662.
    Wu, T., Liu, G., Zhao, J., Hidaka, H., and Serpone, N., 1998. Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous TiO2 Dispersions, J. Phys. Chem. B 102, 5845-5851.
    Wu, T., Liu, G., Zhao, J., Hidaka, H., and Serpone, N., 1999. TiO2-Assisted Photodegradation of Dyes. 9. Photooxidation of a Squarylium Cyanine Dye in Aqueous Dispersions under Visible Light Irradiation, Environ. Sci. Technol. 33, 1379-1387.
    Yoon, K., Kim, S., Lee, D.S., Huh, S., 2000. Characteristics of p-chlorophenol degradation by Photo Fenton oxidation, Wat. Sci. Technol. 42(3), 219-224.
    Yoon, K., Kim, S., Lee, D.S., and Huh, S., 2000. Characteristics of p-chlorophenol degradation by photo–Fenton oxidation, Wat. Sci. Technol. 42(3), 219-224.

    下載圖示 校內:2008-01-09公開
    校外:2008-01-09公開
    QR CODE