簡易檢索 / 詳目顯示

研究生: 林建國
Lin, Jerry
論文名稱: 同軸噴注器之霧化觀察與研究
The Observation of The Spray from Coaxial Injectors
指導教授: 袁曉峰
Yuan, Tony
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 58
中文關鍵詞: 同軸噴注器霧化角均勻度
外文關鍵詞: Shear coaxial injectors, Spray angle, SMD, P.I.
相關次數: 點閱:146下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以水及空氣為工作流體,針對剪切式同軸噴注器(shear coaxial injectors)之幾何結構(面積比)及噴注速度(速度比)對霧化效果的影響作為研究目標。主要觀察霧化角(spray angle)、SMD粒徑分布(droplet size distribution)、二維質量機率分布(2D Mass probability distribution)及均勻度(Patternation Index, P.I.)隨參數之變化;實驗採用(1)正面噴霧流場影像、(2) Malvern粒徑分析及(3) PLIF光學觀測等三種不同方式觀測霧化現象:從實驗結果顯示,霧化角受氣體動力作用力之影響,會隨著氣體流速增加而擴張,而氣層厚度的增加則使得霧化液滴受氣層包覆作用而縮減霧化角。SMD粒徑分布則隨氣/液體速度比增加而粒徑減小,且因液滴持續之空氣動力不穩性,下游區域粒徑較上游端為小;而氣層厚度增加,則因氣層對液滴提供更具持續性之剪切力,其霧化液滴粒徑亦明顯減小。而PLIF觀察之液滴二維質量機率分布顯示隨著速度比增加及氣層厚度增加,其霧化液滴分布均勻度亦隨之增加。

    This research focused on the characterization of the sprays from water/air coaxial injectors. The spray angle, droplet size, and the mass distribution pattern were analyzed by images from digital camera, Malvern droplet size analyzers and PLIF techniques, respectively. Experiments at various velocity ratios (540) and different thickness of the annular air flows were conducted. The results showed that the spray angles increased with increasing air velocities as well as velocity ratios. With thicker annular air flows, the spray angles were smaller because of the increasing constrain from the air flow to the droplets. For droplet size observation, the SMD of water droplets decreased with increasing velocity ratio and down stream distance for the effect of aerodynamic instability. With thicker annular air flows, the SMD of water droplets were smaller because of the increase of the continuous interaction between high speed air flow and water droplets. The uniformities or patternation index (P.I.) of droplet mass distributions analyzed by PLIF were shown to increase with air/water velocity ratio as well as the thickness of the annular air flow of the coaxial injector.

    目錄 摘要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 實驗動機與目的 9 第二章 實驗設備 10 第二章 實驗設備 11 2-1同軸噴注器機構 11 2-2流量供應及控制系統 11 2-3 PLIF光學觀測系統 12 2-4 MALVERN粒徑分析儀 13 第三章 實驗方法及步驟 15 3-1 同軸噴注器噴注條件設定 15 3-2正面霧化影像霧化角度分析 16 3-3 MALVERN粒徑分析 18 3-4 PLIF影像觀測方法 18 第四章 實驗結果及討論 21 4-1 同軸噴注器霧化正面影像觀察 21 4-1-1噴注速度對同軸噴流特徵霧化角之影響 21 4-1-2面積比對同軸噴流特徵霧化角之影響 22 4-1-3速度比對同軸噴流特徵霧化角之影響 23 4-1-4 混合比對同軸噴流特徵霧化角之影響 24 4-2 同軸霧化現象之整體SMD粒徑分布 25 4-2-1 速度比對於特徵霧化角位置之SMD粒徑分布之影響 25 4-2-2 面積比對於特徵霧化角位置之SMD粒徑分布之影響 26 4-2-3 霧化範圍整體SMD粒徑分布 27 4-3同軸霧化現象之整體質量分布 28 第五章 結論及未來工作 29 第五章 結論及未來工作 30 5-1結論 30 5-2未來工作 31 參考文獻 32 附錄 48 自述 58

    參考文獻
    [1]Lefebvre, A. H, “Atomization and Spray”, Hemisphere Publishing Corporation, pp3-60, 1989

    [2]Weber, C., “On the Disruption of Liquid Jets”, Math. Mech., Vol. 11, pp. 136, 1931

    [3]Vigor Yang, Mohammed Habiballah, Michael Popp ,”Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis, And Design” , AIAA, pp.201-260, 2004

    [4]Mayer, W. O. H., “Coaxial atomization of a round liquid jet in a high speed gas stream: A phenomenological study”, Experiments in Fluids, Vol.16, pp 401-410, 1994

    [5]Mayer, W. O. H., Branam, R., “Atomization characteristics on the surface of a round liquid jet”, Experiments in Fluids, Vol.36, pp. 528-539, 2004

    [6]Matthew P. Juniper and Sebastien M. Candel, “The stability of ducted compound flows and consequences for the geometry of coaxial injectors”, Journal of Fluid Mechanics, Vol. 482, pp. 257-269, 2003

    [7]Lasheras, J. C., Hopfinger, E. J., “LIQUID JET INSTABILITY AND ATOMIZATION INA COAXIAL GAS STREAM”, Annu. Rev. Fluid Mech. Vol. 32, pp. 275–308, 2000

    [8]Lasheras, J. C., Villermaux E. and Hopfinger, E. J., “Break-up and Atomization of a Round Water Jet by a High-Speed Annular Air Jet”, Journal of Fluid Mechanics, Vol. 357, pp. 351-379, 1998

    [9]Baoe Yang and Micale Oschwald, “Atomization and Flames in LOX/H2 and LOX/CH4 Spray Combustion”, Journal of Propulsion and Power, Vol. 23, No. 4, 2007

    [10]Gautam, V., Gupta, A. K., ”Cryogenic Flow and Atomization from a Coaxial Injector”, Journal of Propulsion and power, Vol. 25, No. 1, 2009
    [11]Gorokhovski, M., Jouanguy J. and Chtab-Desportes, A., “Stochastic model of the near-to-injector spray formation assisted by a high-speed coaxial gas jet”, Fluid Dynamics Research, Vol.41, 2009
    [12]Ji-Hyuk Im, Insang Moon, “Comparative Study of Spray Characteristics of Gas-centered and Liquid-Centered Swirl Coaxial Injectors”, Journal of Propulsion and Power, Vol. 26, No.6, 2010

    [13]Ferraro, M., Kujala, R. J., Thomas, J.-L., Glogowski, M. J. and Micci, M. M., “Effects of GH2/LOX Velocity and Momentum Ratios on Shear Coaxial Injector Atomization”, Journal of Propulsion and Power, Vol. 18, No. 1: Technical notes, 2001

    [14]Soltani, M.R., Ghorbanian, K., Ashjaee, M., Morada, M.R., “Spray characteristics of a liquid–liquid coaxial swirl atomizer at different mass flow rates”, Aerospace Science and Technology, Vol.9, pp.592–604, 2005

    [15]Engelbert, C., Hardalupas, Y. and WhiteLaw, J. H., “Breakup Phenomena in Coaxial Airblast Atomizers”, Proc. R. Soc. Lond. A., Vol.451, pp 189-229, 1995

    [16]Dombrowski, N. and Johns, W. R. , “The Aerodynamics Instability and Disintegration of Viscous Liquid Sheets”, Chemical Engineering Science, Vol. 18, pp. 203-214, 1963.

    下載圖示 校內:立即公開
    校外:2012-08-31公開
    QR CODE