簡易檢索 / 詳目顯示

研究生: 林宜學
Lin, Yi-Shiue
論文名稱: 利用傅式轉換紅外光譜儀研究甲酸根和甲醯胺在中孔洞二氧化矽表面上的吸附與光化學反應
FTIR Study of the Adsorption and Photochemistry of Formate and Formamide on Mesoporous SiO2
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 65
中文關鍵詞: 傅式轉換紅外光譜儀中孔洞二氧化矽光化學反應
外文關鍵詞: Photochemistry, Mesoporous SiO2, FTIR
相關次數: 點閱:71下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   中孔洞SiO2的製備和結構已被廣泛的探討而且催化反應中也被用來做為支撐介質。但中孔洞SiO2的有機分子的吸附和光化學則尚未深入、有系統的研究。本篇論文在真空系統中,利用傅氏轉換紅外光譜儀(FTIR)研究甲酸根(Formate)和甲醯胺(Formamide)在中孔洞SiO2表面上的吸附及光化學反應。
      甲酸根在中孔洞SiO2表面受到325 nm的光照射時,甲酸根會光分解成CO2(g)。325 nm(~4eV)UV光不能夠使SiO2(band gap ~9eV)激發,因此,不像TiO2一樣產生電子-電洞對而使得甲酸根分解成CO2。推測甲酸根在中孔洞SiO2上的光分解是經由吸附相甲酸根的電子轉移到SiO2上然後再分解成CO2。
      甲醯胺在35 oC時,同時會以分子性吸附(HCONH2(a))以及可能斷C-N鍵和N-H鍵而分解性吸附(HCOO(a)、NH(a)或N2O(a))在表面上。吸附相的甲醯胺在有氧或無氧下照光皆會分解而產生HCOO(a), NCO(a)或OCN(a)之表面物種的光產物。

     Fabrication and structural characterization of mesoporous silica have been extensively explored. These materials are also used as supports in catalysis. However the adsorption and photoreactions of organic adsorbates on mesoporous silica have not yet been symtematically and intensively investigated. This paper employes Fourier-transformed infrared spectroscopy to study the adsorption and photoreactions of formate (HCOO) and formamide (HCONH2) on mesoporous SiO2 in a vacuum system.
     The adsorbed HCOO decomposes into CO2(g) under irradiation at 325nm. Because the light used was unable to excite the band gap (~9ev), unlike the case of TiO2, photoholes from band gap excitation are not considered to be the initation species for the formate decomposition. It is suggested that the photoinduced decomposition of HCOO on the SiO2 proceeds via electron transfer in a direction from adsorbed HCOO to SiO2.
     Formamide can be adsorbed with intact molecular form (HCONH2(a)) and dissociative form (HCOO(a), NH(a) or N2O(a)) on the surface at 35 oC. For the adsorbed HCONH2, HCOO(a), NCO (isocyanate) or OCN (cyanate) are generated under irriation at 325 nm in the presence or absence of O2.

    目錄 第一章 緒論……………………………………………........................1 1-1表面科學……………………………………….…….................1 1-1-1表面的定義……………………………………........…….2 1-1-2表面催化……………………………………………....….2 1-1-3表面吸附………………………………………..…….…..3 1-2光催化……………………………………..…….……………...4 1-2-1光激發………………………….….……..……………….4 1-2-2載子捕捉……………..………….…….…...…...………...8 1-3中孔洞分子篩材料的發展與研究動機……………………...9 第二章 實驗系統及實驗方法………………………………………....14 2-1實驗系統概述……………………………………………..…..14 2-1-1儀器……..…………………..………………………….15 2-1-2藥品…..…………………..…………………………….16 2-2傅氏轉換紅外線光譜系統……………………………………17 2-2-1光源.……….……………………………………….…..17 2-2-2偵檢器………………………………………………….17 2-3汞燈系統( Mercury lamp system )…………..….……..…….18 2-4真空系統………………………………………………………18 2-5 紅外光譜樣品槽( IR cell )的設計…….……………………..19 2-6二氧化矽/鎢網( SiO2/W )的製備…………………….…..…...22 2-6-1 PE64-Silica的製備…………………………………….22 2-6-2 SiO2/W的製備…………………………………………23 2-6-3 SiO2/W在紅外光譜樣品槽( IR cell )的擺放位向……23 2-6-4 SiO2/W的前處理………………………………………24 2-7藥品的前處理………………………………..………………25 第三章 結果與討論……………………………………………………26 3-1甲酸根(HCOO,formate)……………………………..……...26 3-1-1甲酸(HCOOH,formic acid)的吸附研究………..……..26 3-1-2 HCOO(a)/PE64-Silca(NaOH水洗)光反應及熱對照……30 3-2甲醯胺(HCONH2,Formamide).………………..……………40 3-2-1甲醯胺的吸附研究……………...………………………40 3-2-2有氧條下HCONH2(a)/PE64-Silca(NaOH洗過)光反應 及熱對照………………………………………….…….46 3-2-3 無氧條件下HCONH2(a)/PE64-Silica(NaOH水洗)照光反 應………………………………………………………49 3-2-4 無氧存在下HCONH2(a)/PE64-Silica(NaOH水洗)熱對照 反應……………………………………………………..55 第四章 結論………………..………………….……………………….57 4-1 HCOO在中孔洞SiO2表面上的光反應………...……………57 4-2 HCONH2在中孔洞SiO2表面上的吸附與光反應…..…….….57 參考文獻………………………………………………………………..58 圖表目錄 圖1-1 光激發示意圖……………………………………………………6 圖1-2電子-電洞對的去激發途徑………………………………….…...7 圖1-3 BC copolymer templates used in mesostructure generation……..11 圖2-1實驗系統架構簡圖………………………………………..……..14 圖2-2 耐高溫不鏽鋼IR cell的設計…………………………….……..21 圖2-3 SiO2/W擺放的位向……………………………………………..24 圖3-1 HCOOH吸附之IR吸收光譜….……………………………….27 圖3-2 HCOO有氧光反應之IR吸收光譜圖…………………………..32 圖3-3 甲酸根加氧照光180min,反應物HCOO(a)和光產物CO2(g)的相 對濃度與照光時間的關係圖…………………………………..33 圖3-4 HCOO在MCM-41與Cab-O-Sil上的有氧光反應之IR吸收光 譜圖…………………….………………………………….……37 圖3-5 HCOO無氧照光反應之IR光譜圖………….…………………38 圖3-6比較HCOO有氧與無氧條件下照光之IR光譜圖……………..39 圖3-7甲醯胺吸附之IR吸收光譜圖…………...……………………..41 圖3-8甲醯胺在密閉系統下之吸附的IR光譜研究…………….……45 圖3-9 HCONH2有氧光反應之IR吸收光譜圖………………………..47 圖3-10 甲醯胺有氧光反應及熱對照之IR吸收光譜圖……….……..48 圖3-11 HCONH2無氧光反應之IR吸收光譜圖…………………….....50 圖3-12 CO有氧光反應之IR吸收光譜圖………………………..……52 圖3-13 甲醯胺光反應及熱對照之IR吸收光譜圖………..………….56 表3-1: HCOO在各種金屬氧化物表面上的IR頻率(cm-1)之比較…....28 表3-2: 比較甲醯胺吸附在各種不同表面上的振動頻率(cm-1)….…...44 表3-3: 比較NCO在不同表面上的振動吸收…………………………51 表3-4: Isocyanato Comoplexes的振動頻率(cm-1)……………………..51 表3-5 Fulminato Complexes的吸收頻率(cm-1)………………………54 Scheme 3-1 SiO2表面經由高溫dehydroylation……………….…...…..29 Scheme 3-2甲酸根在SiO2表面上可能的吸附…………………….….29 Scheme 3-3甲醯胺在SiO2表面上可能的吸附物種……………….….44

    1. S. J. Gregg and K. S. Sing, Adsorption, Surface area and Porosity. Academic Press, New York, 1967.
    2. G. A. Somorjai, Introduction to surface chemistry and catalysis, Wiley & Sons, New York, p1, 1994.
    3. J. C. Vickerman, Surface Analysis, Wiley & Sons, New York, p2, 1997.
    4. P. W. Atkins, Physical Chemistry, Oxford University, p997, 1994.
    5. G. A. Somorjai, Introduction to surface chemistry and catalysis, Wiley & Sons, New Youk, p443, 1994.
    6. 卓靜哲,何瑞文,黃守仁,施良垣,蘇世剛,物理化學,三民書局,台南市,第507-508頁,1994年。
    7. A. L. Linsebigler, G. Lu and J. T. Yates, Jr., Chem. Rev. 95, 735, 1995.
    8. M. A. Fox and M. T. Dulay, Chem. Rev. 93, 341, 1993.
    9. S. Bhatia, Zeolite catalysis principles and application, CRC press, Florida, 1990.
    10. B. Imelik, Y. Naccache, J. C, Vedrine, G. Coundurier and H. Praliaud, Catalysis by Zeolite, Elesevier, Amstordam, 1980.
    11. W. J. Ward, Molecular sieve catalysts in applied industrial catalysis, Vol.3, Academic press, New York, 1984.
    12. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 359, 710, 1992.
    13. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 114, 10834, 1992.
    14. A. Sayari, Chem. Mater., 8, 1840, 1996.
    15. R. Neumann, K. Khenkin, Chem. Commun. 23, 2643, 1996.
    16. B. Charkraborty, A. C. Pulikottil and B. Viswanathan, Catal. Lett. 39, 63, 1996.
    17. M. Hartman, A. Popll and L. Kenven, J. Phys. 100, 9906, 1996.
    18. A. Corma, M. T. Navarro, J. Perez-Pariente and F. Sanchez, Stud. Surf. Sci. Catal. 84, 69, 1994.
    19. J. S. Reddy abd A. Sayari, J. Chem. Soc., Chem. Commun., 2231, 1995.
    20. C. G. Wu and T. Bein, Science, 264, 1757, 1994.
    21. C. G. Wu and T. Bein, Science, 266, 1013, 1994.
    22. C. G. Wu and T. Bein, Chem. Mater., 6, 1109, 1994.
    23. Y. S. Lee, D. Surjadi and J. F. Rathman, Langmuir, 12, 1996.
    24. C. H. Ko, R. Ryoo, J. Chem. Commun., 2467, 1995.
    25. S. C. Tsang, J. J. Davis, M. L. H. Green., H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Chem. Soc. Chem. Commun., 1803, 1995.
    26. T. Abe, Y. Tachibana, T. Uemtsu, M. Iwamoto, J. Chem. Soc., Chem. Commun., 1617, 1995.
    27. P. Behrens and G. D. Stucky, Angew. Chem. Int. Ed. Engl. 32, 696, 1993.
    28. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky, J. Am. Chem. Soc., 120, 6024, 1998.
    29. G. J. A. A. Soler-Illia, E. L. Crepaldi, D. Grosso and C. Sanchez, Current Opinion in Colloid and Interface Science, 8, 109, 2003.
    30. D. Grosso, G. J. A. A. Soler-Illia and F. Babonneau, Adv. Mater., 13, 1085, 2001.
    31. E. L. Crepaldi, G. J. A. A. Soler-Illia, D. Grosso and P. A. Albouy, Chem. Commun., 1582, 2001.
    32. D. Grosso, A. R. Baljenende, P. A. Albouy and A. Ayral, Chem. Mater., 13, 1848, 2001.
    33. D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka and G. D. Stucky, Adv. Mater., 10, 1380, 1998.
    34. A. Corma, Chem. Rev., 97, 2373, 1997
    35. J. Y. Ying, C. P. Mehnert and M. S. Wong, Angew. Chem., Int. Ed. Engl., 38, 56, 1999.
    36. D. Brunel, Microporous Mesoporous Mater., 27, 329, 1999.
    37. R. Anwander, I. Nagl, M. Widenmeyer, G. Engekhardt, O. Groeger, C. Palm and T. Röser, J. Phys. Chem. B, 104, 3532, 2000.
    38. J. K. A. Dapaah, Y. Uemichi, A. Ayame, H. Matsuhashi and M. Sugioka, Chem. Lett., 604, 2000.
    39. Y. Inaki, Y. Kajita, H. Yoshida, K. Ito and T. Hattori, Chem. Commun., 2358, 2001.
    40. J. N. Armor and P. M. Zambri, J. Catal., 73, 57, 1982.
    41. M. Lacroix, G. M. Pajonk and S. J. Teichner, J. Catal., 101, 314, 1986.
    42. G. N. Kastanas, G. A. Tsigdinos and J. Schwank, J. Appl. Catal., 44, 33, 1988.
    43. S. Kasztelan and J. B. Moffat, J. Catal., 106, 512, 1987.
    44. K. Vikulov, G. Martra, S. Coluccia, D. Miceli, F. Arena, A. Parmaliana and E. Paukshtis, Catal. Lett., 37, 235, 1996.
    45. Y. Matsumura, K. Hashimoto and S. Yoshida, J. Catal., 117,135, 1989.
    46. Y. Matsumura, J. B. Moffat and K. Hashimoto, J. Chem. Soc., Faraday Trans., 90, 1177, 1994.
    47. E. W. Bittner, B. C. Bockrath and J. M. Solar, J. Catal., 149, 206, 1994.
    48. A. Morikawa, M. Hattori, K. Yagi and K. Otsuka, Z. Phys. Chem., N. F., 140, 309, 1977.
    49. M. Anpo, C. Yun and K. Kubokawa, J. Catal., 61, 267, 1980.
    50. Y. Kubokawa, M. Anpo and C. Yun, Proc. 7th Int. Congress Catal. (B) p1171, 1980.
    51. A. Ogata, A. Kazukawa and M. Enyo, J. Phys. Chem., 90, 5201, 1986.
    52. H. Yoshida, T. Tanaka, M. Yamamoto, T. Funabiki and S. Yoshida, Chem. Commun., 2125, 1996.
    53. H. Yoshida, T. Tanaka, M. Yamamoto, T. Yoshida, T. Funabiki and S. Yoshida, J. Catal., 171, 351, 1997.
    54. H. Yoshida, T. Tanaka, S. Matsuo, T. Funabiki and S. Yoshida, J. Chem. Soc., Chem. Commun., 761, 1995.
    55. T. Tanaka, S. Matsuo, T. Maeda, H. Yoshida, T. Funabiki and S. Yoshida, Appl. Surf. Sci., 121/122, 296, 1997.
    56. T. Yamamoto, T. Tanaka, T. Funabiki and S. Yoshida, J. Phys. Chem. B, 102, 5830, 1998.
    57. Y. Tanaka, N. Sawamura, M. Iwamoto, Tetrahedron Lett., 39, 9457, 1998.
    58. T. Yamamoto, T. Tanaka, S. Inagaki, T. Funabiki and S. Yoshida, J. Phys. Chem. B, 103, 6450, 1999.
    59. T. Hattori, T. Ebigase, Y. Inaki, H. Yoshida and A. Satsuma, Stud. Surf. Sci. Catal., 129, 837, 2000.
    60. Y. Sakata, M. A. Uddin, A. Muto, K. Koizumi, Y. Kanada and K. Murata, J. Anal. Appl. Pyrolysis, 43, 15, 1997.
    61. A. Satsuma, T. Ebigase, Y. Inaki, H. Yoshida, S. Kobayashi, M. A. Uddin, Y. Sakata, T. Hattori, Stud. Surf. Sci. Catal., 135, 277, 2001.
    62. H. Yoshida, C. Murata, Y. Inaki and T. Hattori, Chem. Lett., 1121, 1998.
    63. M. Okazaki, Y. Konishi and K. Toriyama, Chm. Phys. Lett., 328, 251, 2000.
    64. R. M. Krishna, A. M. Prakash and L. Kevan, J. Phys. Chem. B, 104, 1796, 2000.
    65. Y. Inaki, H. Yoshida, T. Yoshida and T. Hattori, J. Phys. Chem. B, 106, 9098, 2002.
    66. J. Fan and J. T. Yates, Jr., J. Phys. Chem., 98, 10621, 1994.
    67. G. Herzberg, Molecular Spectra and Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, New York, 1945.
    68. G. Busca, J. Lamotte, J.-C. Lavalley and V. Lorenzelli, J. Am. Chem. Soc. 109, 5197, 1987.
    69. C.-C. Chuang, W.-C. Wu, M.-C. Huang, I.-C. Huang and J.-L. Lin, J. Catal., 185, 423, 1999.
    70. I.-S. Chuang and G. E. Maciel, J. Phys. Chem. B, 101, 3052, 1997.
    71. B. A. Morrow, I. A. Cody and L. S. M. Lee, J. Phys. Chem., 79, 2405, 1975.
    72. B. A. Morrow and I. A. Cody, J. Phys. Chem., 80, 1995, 1976.
    73. B. A. Morrow, I. A. Cody and L. S. M. Lee, J. Phys. Chem., 80, 1998, 1976.
    74. B. A. Morrow, I. A. Cody and L. S. M. Lee, J. Phys. Chem., 80, 2761, 1976.
    75. B. C. Bunker, D. M. Haaland, K. J. Ward, T. A. Michalske and W. L. Smith, Surf. Sci., 210, 406, 1989.
    76. T. A. Michalske and B. C. Bunker, J. Appl. Phys., 56, 2686, 1984.
    77. B. C. Bunker, D. M. Haaland, T. A. Michalske and W. L. Smith, Surf. Sci., 222, 95, 1989.
    78. B. A. Morrow and A. Devi, J. Chem. Soc., Faraday Trans. 1, 68, 403, 1972.
    79. Y. Inaki, H. Yoshida, K. Kimura, S. Inagaki, Y. Fukushima and T. Hattori, Phys. Chem. Chem. Phys., 2, 5293, 2000.
    80. W. P. Gomes, T. Freund and S. R. Morisson, J. Electrochem. Soc., 115, 818, 1968.
    81. W. Chamulitrat and L. Kevan, J. Phys. Chem., 89, 4989, 1985.
    82. M. Anpo, N. Aikawa and Y. Kubokawa, J. Phys. Chem., 89, 5689, 1985.
    83. K. Moritani, I. Takagi and H. Moriyama, Journal of Nuclear Materials, 325, 169, 2004.
    84. E. G. Brame, Jr., J. L. Margrave and V. W. Meloche, J. Inorg. Nucl. Chem., 5, 48, 1984.
    85. N. Hieber and H. Beutuner, Z. Anorg. Allg. Chem., 317, 63, 1962.
    86. S. Kagami, T. Onishi and K. Tamaru, J. Chem. Soc., Faraday Trans., 80, 29, 1984.
    87. J. L. Gland, G. B. Fisher and G. E. Mitchel, Chem. Phys. Lett., 119, 89, 1985.
    88. W.-C. Wu, L.-F. Liao, C.-C. Chuang and J.-L. Lin, J. Catal., 195, 416, 2000.
    89. V. A. Radtsig, I. V. Beresteskaya and S. N. Kostritsa, Kinetics and Catalysis, 39, 863, 1998.
    90. P. Hess and J. Lambers, Mictoelectronic Engineering, 72, 201, 2004.
    91. J. C. Evans, J. Chem. Phys., 22, 1228, 1954.
    92. S. T. King, J. Phys. Chem., 75, 405, 1971.
    93. I. Suzuki, Bull. Chem. Soc. Jpn., 33, 1359, 1960.
    94. D. K. Paul and S. D. Worley, J. Phys. Chem., 94, 8956, 1990.
    95. J. E. Parmeter, U. Schwalke and W. H. Weinberg, J. Am. Chem. Soc., 109, 5083, 1987.
    96. Q. Gao, W. Erley, D. Sander, H. Ibach and J. C. Hemminger, J. Phys. Chem., 95, 205, 1991.
    97. C. R. Flores, Q. Gao and J. C. Hemminger, Surf. Sci., 239, 156, 1990.
    98. J. Zhuang, C. N. Rusu amd J. T. Yates, Jr., J. Phys. Chem. B., 103, 6957, 1999.
    99. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley & Sons, New York, p289, 1986.
    100.H. Yang and J. Whitten, Sur. Sci., 401, 312, 1998.
    101.S. Raunier, T. Chiavassa, F. Marinelli and J. P. Aycard, Chem. Phys., 302, 259, 2004.

    下載圖示 校內:立即公開
    校外:2005-07-28公開
    QR CODE