| 研究生: |
林國政 Lin, Kuo-Cheng |
|---|---|
| 論文名稱: |
Nd:YAG雷射表面合金化鎳基及鈷基粉末於7075鋁合金性質之研究 Investigation of properties for Nd: YAG laser surface alloying of 7075 aluminum alloy with Ni and Co powders |
| 指導教授: |
李世欽
Lee, Shin-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 7075鋁合金 、電化學腐蝕 、雷射表面合金化 |
| 外文關鍵詞: | laser surface alloying, 7075 aluminum alloy, electrochemical corrosion |
| 相關次數: | 點閱:131 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討7075鋁合金表面添加鎳基、鈷基合金粉末後,再利用Nd: YAG雷射進行合金化,在不同功率與走速條件下,觀察其表面顯微組織、微硬度及電化學性質之變化。
實驗結果顯示,鎳基合金層形成Al3Ni2與Al3Ni樹枝狀晶,鈷基合金層則形成Al9Co2、Al13Co4與Al11Cr2,顯微組織主要取決於冷卻速率快慢與合金元素之富集與否。微硬度結果顯示在鎳基或鈷基試片,微硬度較基材最高提升9倍之多,達900 HV。鎳基與鈷基試片之開路電位值在3.5 wt% NaCl水溶液中相當穩定,為 -0.9 V。電位動電位極化曲線結果顯示,鎳基與鈷基合金層可提高其在 3.5 wt% NaCl溶液中之腐蝕電位、保護電位,但孔蝕電位則與7075鋁基材本身相當。動電位測試後SEM觀察發現合金層之Al基材流失,殘留Al-Ni與Al-Co合金組織。鎳基試片在走速900 mm/min,功率1400 W時重量損失最少,為0.08 g。而鈷基試片則在走速600 mm/min,功率1400 W時,重量損失最少,為0.06 g。
The microstructure, Vicker’s microhardness, and electrochemical property on 7075 Al-Zn-Mg-Cu alloy surface coated by Nd: YAG laser surface alloying (LSA) with Ni base and Co base powder have been investigated.
The experimental results showed that the Al3Ni, Al3Ni2 dendrites existed in the Ni base alloy layer, and the Al9Co2, Al13Co4, Al11Cr2 dendrites existed in the Co base alloy layer respectively. The microstructure was decided by the cooling rate and distribution of alloy elements in LSA layers. The microhardness was raised to HV 900 for Ni base and Co base specimens, which is nine times to the matrix. The OCP was -0.9 V for Ni base and Co base alloyed layers in 3.5 wt% NaCl solution. The results of potentiodynamic polarization test showed that corrosion potential and protection potential were increased for Ni base and Co base alloyed layers, but the pitting potential was similar with 7075 alloy. The SEM images after PD test showed the aluminum in the Ni base and Co base alloyed layers flow away. The Al-Ni, Al-Co and Al-Cr IMCs were remained on the surface after PD test. Ni base specimen showed the minimum weight loss of 0.08 g at velocity for 900 mm/min and power for 1400 W. And, Co base specimen showed the minimum weight loss of 0.06 g at velocity for 600 mm/min and power for 1400 W.
[1] G. S. Chen, M. Gao, D. G. Harlow, R. P. Wei, “Corrosion and corrosion fatigue of airframe aluminum alloys”, In NASA. Langley Research Center, FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, pp. 157-173 (1994).
[2] G. S. Chen, C. M. Liao, K. C. Wan, M. Gao, R. P. Wei, “Pitting Corrosion and Fatigue Crack Nucleation, Effects of the Environment on the Initiation of Crack Growth”, ASTM STP 1298, eds. W. A. Van der Sluys, R. S. Piascik, R. Zawierucha (ASTM, West Conshohocken, Pennsylvania), pp. 18-33 (1997).
[3] K.G. Watkins, M.A. McMahon, W.M. Steen, “Microstructure and corrosion properties of laser surface processed aluminium alloys : a review” ,Mater. Sci. Eng. A 213, pp. 55–61(1997).
[4] A. Almeida, M. Anjos, R. Vilar et al., “Laser alloying of aluminum alloys with chromium”, Surface and Coatings Technology, 70, pp. 221–229 (1995).
[5] Y. Fu, A.W. Batchelor, Y. Gu, K.A. Khor, H. Xing, “Laser alloying of aluminum alloy AA 6061 with Ni and Cr. Part 1. Optimization f processing parameters by X-ray imaging”, Surface and Coatings Technology, 99 , pp. 287–294 (1998).
[6] J. Kelly, K. Nagarathnam, J. Mazumder, “Laser cladding of cast aluminum-silicon alloys for improved dry sliding wear resistance”, J. Laser Appl. 10, pp. 45–54 (1998).
[7] W. J. Tomlinson, A. S. Bransden, “Cavitation erosion of laser surface alloyed coatings on Al-12%Si”, Wear, 185 , pp. 59–65 (1995).
[8] C. Hu, H. Xin, T. N. Baker, “Formation of continuous surface Al-SiCp metal matrix composite by overlapping laser tracks on AA6061 alloy”, J. Mater. Sci. Technol. 12, pp. 227–232 (1996).
[9] John E. Hatch, “Aluminum: Properties and Physical Metallurgy”, American Society for Metal, pp. 230-352 (1984).
[10] W. Sander and K. L. Meissner, Der Einfluso, “derVerbindering Mg-Zn2 und die Vergutbackeit von Aluminum Legierungen”, Zeitschrift fuer Anorganische Chemie, Vol 154, pp. 922-925 (1926).
[11] H. P. Godard, Ed., The Corrosion of Light Metals, New York: John Wiley & Sons, pp. 12 (1967).
[12] 柯賢文, “腐蝕及其防治”, 全華科技圖書, 2001.
[13] Denny A. Jones, “Principles and Prevention of Corrosion”, 2nd ed., Prentice Hall, pp. 235-356 (1997).
[14] H. P. Van Leeuwen, J. A. M. Boogers, C. J. Stentler, “The Contribution of Corrosion to the Stress Corrosion Cracking of Al-Zn-Mg Alloys”, Corrosion, vol.31, No.1, pp. 23-29 (1975).
[15] S. M. Lee, S. I. Pyun, Y.G. Chun, “A Critical Evaluation of the Stress-Corrosion Cracking Mechanism in High-Strength Aluminum Alloys”, Metall. Trans., vol.22A, pp. 2407-2413 (1991).
[16] A. Joshi, C. R. Shastry, M. Levy, “Effect of Heat Treatment on Solute Concentration at Grain Boundaries in 7075 Aluminum Alloy”, Metall. Trans., vol.12A, pp.1081-1088 (1981).
[17] N. J. H. Holroyd, G. M. Scamans and R. Hermann, “Corrosion Chemistry Within Pits, Crevices, and Cracks “, Conference Proceedings, pp. 495-510 (1987).
[18] N. G. Fontana and N. D. Greene, “Corrosion Engineering”, 3rd edition, Mcgraw-Hill, 1986.
[19] R. Steigerweld, “Metals Handbook-Corrosion”, Vol.13, ASM International, 1987.
[20] D. A. Jones, “Principles and Prevention of Corrosion”, Macmillan Publishing Co., 1992.
[21] H. P. Godard, “Examing Causes of Aluminum Corrosion”, Materials Performance, Vol.8 (No.8), pp.25-30 (1969).
[22] P. M. Aziz, “VIEWS ON THE MECHANISM OF PITTING CORROSION OF ALUMINUM”, Corrosion, Vol.9, pp. 85-90 (1953).
[23] K. Sotovdeh, et al, Corrosion, Vol.37, pp. 358, 1981.
[24] T. E. Wright, H. P. Godard, I. H. Jenks, Corrosion, Vol.13, pp. 481, 1957.
[25] American Society for Testing and Materials, “Standard Definitions of Terms Relating to Corrosion and Corrosion Testing”, 1979.
[26] F. Mansfeld, J. V. Kenkel, “Laboratory studies of galvanic corrosion of aluminum alloys”, American Society for Testing and Materials, STP 576, pp. 20-74 (1976).
[27] H. P. Godard, “Corrosion Behavior of Aluminum in Natural Waters”, Canadian Journal of Chemical Engineering, pp. 167-176 (1960).
[28] Denny A. Jones, “Principles and Prevention of Corrosion”, 2nd ed., Prentice Hall, pp. 235-356 (1997).
[29] G. M. Ugiansky, et al, “Slow Strain-Rate Stress Corrosion Testing of Aluminum Alloys”, Stress Corrosion Cracking – The Slow Strain Rate Technique, ASTM STP 665, pp. 254-265 (1979).
[30] E. M. Breinan, B. H. Kear and C. M. Banas, “Proceeding Material with Lasers”, Physics Today, pp. 44-50 (1976).
[31] 關振中, “激光加工工藝手冊”, 中國計量出版社, 1998.
[32] 丁建春等, “高能束合金化技術的研究現狀和發展趨勢”, 中國表面工程, vol. 15(2), pp. 4-7 (2002).
[33] 李智, 馬樁喻, “激光表面合金化工藝進展”, 材料科學與工程, vol. 17(2), pp. 81~84 (1999).
[34] 張國順, 鄭壽昌, “現代雷射製造技術”, 新文京開發出版有限公司, 2008.
[35] S. S. Raja, S. A. Namjoshi, M. Misra, “Improved corrosion resistance of Ni-22Cr-13Mo-4W Alloy by surface nanocrystallization”, Materials Letters, vol.59, pp. 570-574 (2005).
[36] S. Shrestha, T. Hodgkiess, A. Neville, “Erosion-corrosion behavior of high-velocity oxy-fuel Ni-Cr-Mo-Si-B coatings under high velocity”, Wear, vol.259, pp. 208-218 (2005).
[37] X. Zhang, X. S. Xie, Z. M. Yang, J. X. Dong, Y. Gao, Z. Xu, T. H. Zhang, “A study of nickel-base corrosion resisting alloy layer obtained by double glow plasma surface alloying technique”, Surface and Coatings Technology, vol. 131, pp. 378-382 (2000).
[38] C. T. Kwok, H. C. Man, F. T. Cheng, “Cavitation erosion-corrosion behavior of laser surface alloyed AISI 1050 mild steel using NiCrSiB”, Material Science and Engineering, A 303, pp. 250-261 (2001).
[39] Xu Jianga, Xishan Xie, Zhong Xu, ”Investigation on multi-element Ni-Cr-Mo-Cu alloying layer by double glow plasma alloying technique”, Material Chemistry and Physics 92 , pp. 340-347 (2005).
[40] C. Gayard, A. Barbangelo, C.H. Allibert and J. Briole, “Solidification Path and Phase Equilibria in the Liquid-Solid Range of Cobalt-base Alloy”, Journal of Materials Science, Vol.16, pp. 604-612(1986).
[41] “Metal Handbook”, 9th ed., ASM Metals Park, OH, Vol.6, pp. 771-803 (1981).
[42] K.C. Antony, “Wear-Resistant Cobalt-Base Alloys”, Journal of Metals, Vol.35, pp. 52-60 (1983).
[43] J.L, Brouwer, D. Coutsiuradis, “Influence of Tungsten and Carbon Contents on the Microstructure and Properties of a Cobalt-Base Hardfacing Alloy”, Cobalt, no. 32, pp. 141-147 (1966).
[44] Thermadyne, Deloro Stellite Limited, Data Sheet, 1990.
[45] “Metal Handbook”, ASM, Vol.1, pp. 967-968.
[46] Thermadyne, Deloro Stellite Gmbh, Tachnical Data, 1992.
[47] Thaddeus B. Massalski, et al., “Binary alloy phase diagrams”, ASM, 1990.
[48] ASTM Standard G5-94, “Standard Reference Test Method for Making Potentiostatic and Potentiodynamic anodic Polarisation Measurements”, Annual Book of ASTM Standards, vol. 03.02, ASTM, (1994).
[49] A. Matsunawa, et al., “Porosity Formation in Laser Welding Mechanisms and Suppression Method”, G-ICALEO, pp. 73-82 (1997).
[50] G. J. Shannon and W. M. Steen, “Investigation of Keyhole and Melt Pool Dynamics During Laser Butt Welding of Sheet Steel Using a High Speed Camera”, Proc. Of ICALEO, pp. 130-138 (1992).
[51] I. W. Chen, A. S. Argon, “Diffusive growth of grain-boundary cavities”, Acta Metall., 29, pp. 1759-1768 (1981).
[52] G. Y. Liang, J. Y. Su, “The microstructure and tribological characteristics of laser-clad Ni–Cr–Al coatings on aluminium alloy”, Materials Science and Engineering: A, 290, pp. 207-212 (2000).
[53] H. C. Man, S. Zhang, T. M. Yue, F. T. Cheng, “Laser surface alloying of NiCrSiB on Al6061 aluminium alloy”, Surface and Coatings Technology, 148, pp. 136-142 (2001).
[54] J. M. Pelletier, L. Renaud, F. Fouquet, “Solidification microstructures induced by laser surface alloying: influence of the substrate”, Material Science and Engineering, A134, pp. 1283-1287 (1991).
[55] E. GAFEET, J. M. PELLETIER and S. BONNET-JOBEZ, “LASER SURFACE ALLOYING OF Ni FILM ON Al-BASED ALLOY”, Acta metall., 37, pp. 3205-3215 (1989).
[56] G. Y. Liang, T. T. Wong, “Microstructure and character of laser remelting of plasma sprayed coating (Ni-Cr-Si-B) on Al-Si alloy”, Surface and Coatings Technology, 89, pp. 121-126 (1997).
[57] G. Y. Liang, C. L. Li, J. Y. Su, “Segregation phenomena of laser alloyed Ni-Cr-Al coating on Al-Si alloy”, Material Science and Engineering, A224, pp. 173-176 (1997).
[58] J. H. Abboud, D. R. F. West, “Microstructures of titanium-aluminides produced by laser surface alloying”, Journal of Materials Science, 27 , pp. 4201-4207 (1992).
[59] I. Garca, J. de la Fuente, J. J. de Damborenea, “(Ti,Al)/(Ti,Al)N coatings produced by laser surface alloying”, Materials Letters, 53, pp. 44-51 (2002).
[60] H. Matiya, B. C. Giessen and N. J. Grant, J. Inst. Metals 96, pp.30 (1968).
[61] C. T. Kwok, F. T. Cheng , H. C. Man, “Laser surface modification of UNS S31603 stainless steel using NiCrSiB alloy for enhancing cavitation erosion resistance”, Surface and Coatings Technology, 107, pp. 31-40 (1998).
[62] A. Almeida, M. Anjos, R. Vilar, R. Li, M. G. S. Ferreira, “Laser alloying of aluminum alloys with Chromium”, Surface and Coatings Technology, 70, pp. 221-229 (1995).
[63] S. Sun, Y. Durandet, M. Brandt, “Parametric investigation of pulsed Nd: YAG laser cladding of stellite 6 on stainless steel”, Surface Coatings and Technology, 194, pp. 225-231 (2005).
[64] H. C. Man, C. T. Kwok, T. M. Yue, “Cavitation erosion and corrosion behaviour of laser surface alloyed MMC of SiC and Si3N4 on Al alloy AA6061”, Surface and Coatings Technology, 132, pp. 11-20 (2000).