| 研究生: |
鄭玟芩 Cheng, Wen-Chin |
|---|---|
| 論文名稱: |
海洋微藻在氮源限制下固定CO2與生質潛能組成之研究 CO2-fixation by Marine Microalgae and its Potential Bioenergy Composition at Conditions of Nitrogen Deficiency |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 生質能源 、海洋微藻 、氮限制 、二氧化碳 |
| 外文關鍵詞: | Marine microalgae, Bio-energy, CO2, Nitrogen deficiency |
| 相關次數: | 點閱:85 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球暖化問題日趨嚴重,為了防止氣候變遷影響環境生態,如何減少暖化貢獻度最大的二氧化碳之排放量成了全球共同目標。本研究以模擬吸收塔吸收二氧化碳後之吸收液作為藻體行光合作用所需之碳源,而藻類中又以海洋微藻因具有高光合反應,能快速固定二氧化碳,產生之藻體又可作為生質能源之原料,以減少二氧化碳之排放。而文獻指出在氮源受限的條件下,藻體會產生較多脂質或碳水化合物,可做為生質柴油或生質酒精之原料。因此本研究將探討在氮源限制時,藻類固碳之生長狀況與其生質能源之組成。
本研究以海洋擬球藻MN41作為主要研究對象,以管柱體積一升之光合反應器,光照7,500 Lux,光照時間24 h/d,溫度30℃,在不同氮源濃度、不同氮源種類的條件下進行半批次實驗、曝氣實驗與連續實驗。
在以硝酸根為氮源進行不同氮源濃度之半批次培養實驗中,發現MN41之μmax為4.19 ± 0.36d-1,而半飽和常數Ks為0.03 ± 0.02 mM。而在生質能源中,脂質含量以培養液中起始硝酸根濃度0.56 mM的培養條件時最高,約為26.2%,產率為299 mg/L/d。碳水化合物則在濃度0.34 mM時,有最大比例約為72.6%,產率為700 mg/L/d。在生質體裂解及其產物分析方面,以TA-Mass分析硝酸根培養之藻體在300℃左右有70%的重量損失,而也以此溫度下產生較多之氣體,種類有CH4、H2O、CH3COOH、CO、CO2及大分子氣體,以初始培養條件之硝酸根濃度為0.56 mM下產生最多氣體量。
在以硝酸根為氮源之曝氣實驗方面,發現培養過程中,我們用NaOH來避免培養液酸化,但其中的OH-,會使培養液產生大量以CaCO3為主之沉澱物。
在不同氮源種類之半批次實驗中,MN41對銨根之親和力比硝酸根好,其μmax為8.95 ± 0.96 d-1,而半飽和常數Ks為0.06 ± 0.05 mM,雖然Ks比利用硝酸根培養的大Ks,但結果顯示此藻在相同濃度下,銨根生長得比添加硝酸根快速。生質能源的部份,脂質含量以銨根濃度0.50 mM時有22.6%及產率321 mg/L/d為最高。但碳水化合物則為銨根濃度0.26 mM時之57.2%比例最大,產率則為銨根濃度0.50 mM時最高,為723 mg/L/d。使用尿素作為氮源之MN41生長狀況則不如以上兩種氮源。
在連續實驗中,當進流為pH 6、碳氮濃度分別為5.54與 0.24 mM時,在穩定狀態下之藻密度約為95 mg/L,其藻體之脂質含量約為17.4%;碳水化合物為37.2%,而蛋白質含量約為8%。
In order to mitigate global warming, it’s important to reduce CO2 emissions in the world. In this study, we simulate a flue gas with CO2 to be absorbed in a scrubber, and produce NaHCO3 to grow algae. Some studies suggest marine microalgae have higher photosynthetic efficiencies that can solve the global warming problem. When algae grow in a nitrogen deficiency environment, they may produce more lipid or carbohydrate. Therefore, algae have the potential to be a useful bio-erengy.
The cultivation of marine microalgae MN41 under semi-batch or continuous culture in an 1L photo-bioreactor of this study were carried out at 30℃ and with a light intensity of 7,500 Lux. The operating parameters include nitrogen compound type, nitrogen nutrient concentration, carbonate concentration, and pH.
In the experiments of the effects of nitrate concentration on the lipid and carbohydrate contents of the biomass in a semi-batch process, the results show that μmax = 4.19 ± 0.36 d-1 and Ks = 0.03 ± 0.02 mM. The lipid content hits its peak value of 26.2% with a production rate of 299 mg/L/d when the initial nitrate concentration is 0.56 mM. The carbohydrate content reaches its peak value of 72.6% with a production rate of 700 mg/L/d when the initial nitrate concentration is 0.34 mM.
In a TA-Mass analysis, the biomass has a 70% weight loss at around 300℃. The biomass also generates more gases, such as CH4, H2O, CH3COOH, CO, CO2 and some high molecular weight gases, at this temperature. It generates the most amounts of the gases when the initial nitrate concentration is 0.56 mM. A large amount of CaCO3 is precipitated if OH- is over fed when the carbonate is supplied by bubbling of CO2 through the solution.
In the experiments of the effects of ammonium concentration on the lipid and carbohydrate contents of the biomass in a semi-batch process, the results show that μmax = 8.95 ± 0.96 d-1 and Ks = 0.06 ± 0.05 mM. The lipid content hits its peak value of 22.6% with a production rate of 321 mg/L/d when the initial ammonium concentration is 0.50 mM. The carbohydrate content reaches its peak value of 57.2% with a production of 723 mg/L/d when the initial ammonium concentration is also 0.50 mM. The growth performance of the MN41 is poor when it is cultivated with a urea culture.
From the above results, the nitrate was chosen for the continuous cultivation experiments. The carbonate and nitrate concentrations of the inlet medium were 5.54 and 0.24 mM, respectively, with a pH value of 6. The results show that the biomass maintains at 92~97 mg/L with a lipid content of 17.4% and a carbohydrate content of 37.2%.
『溫室氣體效應氣體減量技術推廣與輔導計劃』,經濟部工業局,工業技術研究院,2001年12月31日。
『溫室氣體效應氣體減量技術推廣與輔導計劃』,經濟部工業局,工業技術研究院,2002年12月31日。
『環境工程概論』,中華民國環境工程學會編印,2002年。
丁澤民等,『生物學』,藝軒圖書出版社,1998年。
工業技術研究院能源與資源研究所,溫室氣體統計,2004年。
台灣日報,第9版,2004年11月10日。
行政院主計處,國情統計通報,2007年5月10日。
行政院主計處,溫室氣體減量概況,2006年6月5日。
行政院環保署,全國環境水質監測資訊網,2008
http://wqshow.epa.gov.tw/
行政院環保署,溫室氣體管制,2007年12月。
http://210.69.101.9/ch/aioshow.aspx?busin=228&path=3708&guid=b25d219b-65db-4fa9-848f-bdbbd1265b20&lang=zh-tw
行政院環境保護署空保處,2006年9月20日。
行政院環境保護署空保處,2007年5月8日。
經濟部工業局,產業溫室氣體減量資訊網,2007年。
http://proj.moeaidb.gov.tw/tigo/index.asp
李文峰,『以MEA溶液去除煙道氣中二氧化碳之研究』,國立成功大學環境工程研究所碩士論文,2002年。
李文哲,『以高溫高鹼度環境培養微藻固定模擬吸收塔之吸收液中CO2之研究』,國立成功大學環境工程研究所碩士論文,2006年。
吳佩芬,『利用本土淡水藻類產製生質柴油之可行性評估』,逢甲大學環境工程與科學學系碩士論文,2006。
林健三,環境工程概論,2002年。
邱耀興,『小球藻固碳培養條件之探討』,長庚大學化工暨材料工程研究所碩士論文,2003年。
柳中明、李國忠、林俊成、劉育慈,『造林復育對台灣環境二氧化碳減量之貢獻』,全球變遷通訊,1999年。
高宜廷,『新型光生化反應器之開發與其在單細胞藻類培養上之應用』,國立清華大學化學工程研究所碩士論文,2001年。
張義宏,『利用本土性小球藻固定二氧化碳之技術開發』,國立台灣大學農業化學研究所博士論文,2001年。
張惟閔,『微藻培養於光生化反應器之系統開發』,國立清華大學化學工程研究所碩士論文,2005年。
許峻賓,『巴西能源政策』,能源報導,經濟部能源局,2006年4月。
郭明朝、陳威希、魏華洲、門立中,『開拓生質能源新世紀』,科學月刊,2006年8月。
陳啟平,『氣動式生化反應器之設計,及其在藻類培養的應用』,國立清華大學化學工程研究所碩士論文,1996年。
陳重修,『二氧化碳與二氧化硫整合性控制技術之研究』,國立台灣大學環境工程研究所碩士論文,2000年。
陳漢烱、李宏台、盧文章,『動手種出生質柴油田』,科學月刊,2006年8月。
胡斯托著,陳儀蓁譯,『光合細菌的工業革命-用藍綠來對付工廠排放的二氧化碳細菌』,科學人雜誌,2005年10月。
黃定國,『多重網狀導流板之氣舉式反應器的設計及其在幾丁聚醣生產上之應用』,國立清華大學化學工程研究所碩士論文,1999年。
經濟部能源局,能源名詞,2007。
http://www.moeaec.gov.tw/PublicService/ps_EnergyTerm.asp。
葉俊良,『在光生化反應器中以二階段策略培養微藻生產油脂之研究』,國立成功大學化學工程研究所碩士論文,2006年。
賈有元,『綠藻Chlorella pyrenoidosa NCHU-6之最適異營培養條件暨培養方法之研究』,國立中興大學食品科學研究所碩士論文,2004年。
潘忠政,『整合鹼液吸收及光合作用以固定二氧化碳』,大葉大學環境工程研究所碩士論文,2001年。
藍大鈞,『藻類固定二氧化碳與藻體的利用研究』,長庚大學化學工程研究所碩士論文,2001年。
蕭吉良,『以氨水溶液於填充塔中去除二氧化碳之研究』,國立成功大學碩試論文,2005。
蕭茂修,『以海洋微藻固定CO2並作為生質能源之研究』,國立成功大學碩士論文,2007年。
蘇宗振,『打造綠色油田』,能源報導,經濟部能源局,2006年4月。
顧洋,『氣候變遷對工業發展之影響,地球環境變遷—地球溫暖化、溫室效應氣體對策研討會論文集』,p.99-103,1995年。
Abanades, J. C. and Alvarez D., “Conversion Limits in the Reaction of CO2 with Lime”, Journal of Energy & Fuels,17, p.308-315, 2003.
Allen, M. B., “Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte“, Journal of Archly ffir Mikrobiologie, 32, p.270-277, 1959.
Alley, R. et al., IPCC(Intergovernmental Panel on Climate Change),2007年2月2日。
Appenzeller, T., National geographic中文版, 2004, 2月。
Atomi, H., “Microbial Enzymes Involved in Carbon Dioxide Fixation”, Journal of Bioscience and Bioengineering, 94(6), p.497-505, 2002.
Bai, H., and Yeh, A. C., “Comparison of Ammonia and Monoethanolamine Solvents to Reduce CO2 Greenhouse Gas Emissions”, The Science of Total Environment, 228, p.121-133, 1999.
Becker, E. W., “Microalgae: Biotechnology and Microbiology”, the Press Syndicate of the University of Cambridge, 1994.
Binaghi, L., Borghi, A. D., Lodi, A., Converti, A., and Borghi, M. D., “Batch and Fed-batch Uptake of Carbon Dioxide by Spirulina platensis”, Journal of Process Biochemistry, 38, p.1341-1346, 2003.
Carvalho, A. P. and F. X. Malcata,”Transfer of Carbon Dioxide within Cultures of Microalgae: Plain Bubbling versus Hollow-Fiber Modules.”, Biotechnol. Prog., 17(2), p.265-272, 2001.
Chisti, Y., “Biodiesel from microalgae”, Journal of Biotechnolgy Advances, 25, p.194-306, 2007.
Dortch, Q., et al., “Response of marine phytoplankton to nitrogen deficiency: Decreased nitrate uptake vs enhanced ammonium uptake”, Marine Biology, 70(1), p.13-19, 1982.
D’Souza, F. M. L., and Kelly, G. J., ” Effects of a diet of a nitrogen-limited alga (Tetraselmis suecica)on growth, survival and biochemical composition of tiger prawn (Penaeus semisulcatus)larvae”, Journal of Aquaculture, 181, p.311-329, 2000.
Fuller, N. J., Campbell, C., Allen, D. J., Pitt, F. D., Zwirglmaier, K., Gall, F. L., Vaulot, D., and Scanlan, D. J., ” Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids”, Aquatic Microbial Ecology, 43, p.79-93, 2006.
Hsueh, H. T., Chu, H., and Chang, C. C. ,“Identification and Characteristics of a Cyanobacterium Isolated from a Hot Spring with Dissolved Inorganic Carbon”, Journal of Environmental Science and Technology, 41, p.1909-1914, 2007.
Hwang, J. Y., ”Low Cost BioScrubber for Greenhouse Gas Control-Topical Report for Phase I”, DE-AC26-98FT40414, 1999.
Illman, A. M., A. H. Scragg, et al., ”Increase in Chlorella strains calorific values when grown in low nitrogen medium.”, Enzyme and Microbial Technology, 27(8), p.631-635, 2000.
Kochert, G., “Carbohydrate determinationby the phenol-sulfuric acid method”, in Handbook of Phycological Methods-Physiological and Biochemical Methods, J. A. Hellebust and J. S. Craigie(ed.), Cambridge Univ. Press, Cambridge, p.95-97, 1978.
Kochert, G., “Protein determination by dye binding”, in Handbook of Phycological Methods-Physiological and Biochemical Methods, J. A. Hellebust and J. S. Craigie(ed.), Cambridge Univ. Press, Cambridge, p.91-93, 1978.
Maeda, K., Owada, M., Kimura, N., Omata, K., and Karube, I., “CO2 Fixation from the Flue Gas on Coal-fired Thermal Power Plant by Microalgae”, Journal of Energy Conversion and Management, 36, p.717-720, 1995.
Martins, I., Oliveira, J. M., Flindt, M. R., and Marques, J. C., “The Effect of Salinity on the Growth Rate of the Macroalgae Enteromorpha intestinalis (Chlorophyta) in the Mondego Estuary (west Portugal)”, Journal of Acta Oecologica, 20, p.259-265, 1999.
Martin-Jezequel V., Hildebrand, M., Brzezinski, and M. A., “Silicon Metabolism in Diatoms: Implications for Growth”, Journal of phycology, 36, p.821-840, 2000.
Michiki, H., “Biological CO2 fixation and utilization project.”, Fuel and Energy Abstracts, 37, p.216-216, 1996.
Minoda, A., R. Sakagami, et al., “Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, cyanidioschyzon merolae 10D.”, Plant and Cell Physiology, 45(6), p.667-671, 2004.
Mirón, A. S., García, M.-C. C., Camacho, F. G., Grima, E. M., and Chisti, Y., “Growth and Biochemical Characterization of Microalgal Biomass Produced in Bubble Column and Airlift Photobioreactors: Studies in Fed-batch Culture”, Journal of Enzyme and Microbial Technology, 31, p.1015-1023, 2002.
Mironov, O.G., T. L. Shchekaturina and I. M. Tsimbal, “Saturated Hydrocarbons in Marine Organism”, Marine Ecology Progress Series, 5, p. 303-309, 1981.
Morita, M., Watanabe, Y., and Saiki, H., “High Photosynthetical Productivity of Green Microalga Chlorella sorokiniana”, Journal of Applied Biochemistry and Biotechnology, 87, p.203-218, 2000.
Oswald, W. J., and C. G. Golueke., “Biological Transformation of Solar Energy.”, Adv Appl Microbiol, 2, p.223-262, 1960.
Radmer, R. J., and Parker, B. C., “Commercial Applications of Algae – Opportunities and Constraints”, Journal of Applied Phycology, 6, p.93-98, 1994.
Ratledge, C., “ Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production”, Journal of Biochimie, 86, p.807-815, 2004.
Raven, P. H., Johnson, and G. B., “Biology”, McGraw-Hill, sixth edition, 2002.
Renaud, S. M., and Parry, D. L., “Microalage for Use in Tropical Aquaculture 2 Effect of Salinity on Growth, Gross Chemical-composition and Fatty-acid Composition of 3 Species of Marine Microalgae”, Journal of applied Phycology, 6, p.347-356, 1994.
Renaud, S. M., L.-V. Thinh, et al., “Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures., Aquaculture, 211(1-4), p.195-214, 2002.
Rittmann, B. E., and McCarty, P. L., “Environmental Biotechnology: Principles and Applications”, McGraw-Hill, 2001.
Rubio, F. C., Fernández, F. G. A., Pérez, J. A. S., Camacho, F. G., and Grima, E. M., “Prediction of Dissolved Oxygen and Carbon Dioxide Concentration Profiles in Tubular Photobioreactors for Microalgal Culture”, Journal of Biotechnology and Bioengineering, 62, p.71-86, 1999.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., and Bullister, J. L., Wanninkhof, R., Wong, C. S., Walace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T. H., Kozyr, A., Ono, T., and Rios, A. F., “The Oceanic Sink for Anthroporgenic CO2.”, Journal of Science, 305, p.362-371, 2004.
Sakai, N., Sakamoto, Y., Kishimoto, N., Chihara, M., and Karbube, I., “Chlorella Strains from Hot Springs Tolerant to High Temperature and High CO2”, Journal of Energy Conversion and Management, 36, p.693-696, 1995.
Schpeper, T., Al-Rubeai, M., Corne, J. F., Dussap, C. G., Elias, C. B., Gomes, J., Gros, J.-B., Hill, D. C., Joshi, J. B., Menawat, A. S., Nisbet, L. J., Pulz, O., Scheibenbogen, K., and Wrigley, S. R., “Bioprocess and Algae Reactor Technology”, Journal of Apoptosis, 1998.
Sobczuk, M. T., Camacho, F. G., Rubio, F. C., Fernández, F. G. A., and Grima, E. M., “Carbon Dioxide Uptake Efficiency by Outdoor Microalgal Cultures in Tubular Airlift Photobioreactors”, Journal of Biotechnology and Bioengineering, 67, p.465-475, 1999.
Stumm, W., and Morgan, J. J., “Aquatic Chemistry”, WILEY, third edition, 1996.
Sukenik, A., Carmeli, Y., and Berner, T., “Regulation of Fatty Acid Composition by Irradiance Level in the Eustigmatophyte Nannochloropsis sp.”, Journal of Phycology, 25, p.686-692, 1989.
Takagi, M., Karseno, and Yoshida, T., “Effect of Salt Concentration on Intracellular Accumulation of Lipids and Triacylglyceride in Marine Microalgae Dunaliella Cells”, Journal of Bioscience And Bioengineering, 101, p.223-226, 2006.
Tapie, P., and Bernard, A., “Microalgae Production: Technical and Economic Evaluation”, Journal of Biotechnology and Bioengineering, 32, p.873-855, 1987.
Terry, K. L., and Raymond, L. P., “System Design for the Autotrophic Production of Microalgae”, Journal of Enzyme and Microbial Technology, 7, p.474-487, 1985.
Uriarte, I., A. Farias, et al., “Cell characteristics and biochemical composition of Dunaliella primolecta Butcher conditioned at different concentrations of dissolved nitrogen.”, Journal of Applied Phycology, 5(4), p.447-453, 1993.
Wake, LV and Hillen, LW, “Nature and hydrocarbon content of blooms of the alga Botryococcus braunii occurring in Australian freshwater lakes.”, Australian Journal of Marine and Freshwater Research, 32, p.353-367, 1981.
Watanabe, Y., and Hall, D. O., “Photosynthetic CO2 Conversion Technologies Using a Photobioreactor Incorporating Microalgae - Energy and Material Balances”, Journal of Energy Conversion and Management, 37, p.1321-1326, 1996.
Watson, R. T. et al., IPCC (Intergovernmental Panel on Climate Change)第三次評估報告,2001。
Williams, J. P., and P. A. Merrilees, “The Removal of Water and Nonlipid Contaminants from Lipid Extracts”, Lipids, 5(4), p.367-370, 1970.
Yamaberi, K., Takagi, M., and Yoshida, T., “Nitrogen depletion for intracellular triacylglyceride accumulation to enhance liquefaction yield of marine microalgal cells into a fuel oil”, Journal of Marine Biotechnology, 6, p.44–48, 1998.
Yamasaki, A., “An Overview of CO2 Mitigation Options for Global Warming-emphasizing CO2 Sequestration Options”, Journal of Chemical Engineering of Japan, 36, p.361-375, 2003.
Yeh, J. T., and Pennline, H. W., “Study of CO2 Absorption and Desorption in a Packed Column”, Journal of Energy & Fuels, 15, p.274-278, 2001.
You, T., and Barnett, S. M., “Effect of Light Quality on Production of Extracellular Polysaccharides and Growth Rate of Porphyridium cruentum”, Biochemical Engineering Journal, 19, p.251-258, 2002.