| 研究生: |
蔡琮翔 Tsai, Tsung-Shiang |
|---|---|
| 論文名稱: |
以光散射法研究聚甲醛/六氟異丙醇電紡液柱及其內部微結構 Analysis of polyoxymethylene/hexafluoroisopropanol electrospinning jet and its internal microstructure using light scattering |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 光散射 、電紡絲 、聚甲醛 、相分離 |
| 外文關鍵詞: | polyoxymethylene, electrospinning, light scattering, phase separation |
| 相關次數: | 點閱:42 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以聚甲醛/六氟異丙醇作為研究系統,結合光散射技術與液態氮瞬間冷凍收集法,探討高分子溶液在電紡過程中液柱的形態演變與流動行為。透過光散射技術可以量測電紡時液柱的直徑變化,進而得到電紡時液柱所承受的拉伸速率(~2800 s⁻¹),並與溶液本身的流變性質進行比較。結果顯示,高分子溶液在電紡時所承受的拉伸速率遠高於高分子鏈的鬆弛速率(~500 s⁻¹),因此發生了流動誘導相分離(flow-induced phase separation)的現象,此現象使得液柱內部產生微結構。
本研究利用液態氮在距離針底特定距離的位置收集電紡液柱,並透過冷凍乾燥機去除凍結的溶劑,此方法使我們可以透過SEM、TEM等儀器直接觀察到液柱的形態,並發現液柱內部微結構的存在,與光散射實驗所得結果互相驗證。
In this study, a polyoxymethylene (POM)/hexafluoroisopropanol (HFIP) system was investigated to explore the morphological evolution and flow behavior of polymer solution jets during electrospinning. By combining light scattering techniques with a liquid nitrogen freezing method, the diameter variation of the liquid jet during electrospinning was measured, allowing the estimation of the jet stretching rate (~2800 s⁻¹). This rate was then compared with the rheological properties of the solution. The results revealed that the stretching rate experienced by the polymer solution during electrospinning significantly exceeded the relaxation rate of the polymer chains (~500 s⁻¹), leading to the occurrence of flow-induced phase separation, which resulted in the formation of internal microstructures within the jet.
Liquid nitrogen was used to collect the electrospinning jet at specific distances from the needle tip, and a freeze-drying process was employed to remove the frozen solvent. This approach enabled direct observation of the jet morphology using SEM and TEM. The existence of internal microstructures within the jet was clearly identified, consistent with the findings from light scattering experiments.
[1] Doshi, J.; Reneker, D. H. Electrospinning process and applications of electrospun fibers. J. Electrostatics 1995, 35 (2–3), 151–160.
[2] Wang, C.; Wang, Y.; Hashimoto, T. Impact of entanglement density on solution electrospinning: A phenomenological model for fiber diameter. Macromolecules 2016, 49 (20), 7985–7996.
[3] Wang, C.; Hashimoto, T. Self-organization in electrospun polymer solutions: From dissipative structures to ordered fiber structures through fluctuations. Macromolecules 2018, 51 (12), 4502–4515.
[4] Wang, Y.; Hashimoto, T.; Li, C. C.; Li, Y. C.; Wang, C. Extension rate of the straight jet in electrospinning of poly(N-isopropyl acrylamide) solutions in dimethylformamide: Influences of flow rate and applied voltage. J. Polym. Sci., Part B: Polym. Phys. 2018, 56 (4), 319–329.
[5] Wang, Y.; Wang, C. Rheological aspects and extension-induced phase separation in electrospinning of poly(N-isopropyl acrylamide) solutions in dimethylformamide. Macromol. Mater. Eng. 2019, 304 (9), 1900281.
[6] Wang, C.; Hashimoto, T.; Wang, Y.; Lai, H. Y.; Kuo, C. H. Formation of dissipative structures in the straight segment of electrospinning jets. Macromolecules 2020, 53 (18), 7876–7886.
[7] Wang, C.; Hashimoto, T. A scenario of a fiber formation mechanism in electrospinning: Jet evolves assemblies of phase-separated strings that eventually split into as-spun fibers observed on the grounded collector. Macromolecules 2020, 53 (21), 9584–9600.
[8] Wang, C.; Hashimoto, T.; Wang, Y. Extension rate and bending instability of electrospinning jets: The role of the electric field. Macromolecules 2021, 54 (15), 7193–7209.
[9] Wang, Y.; Wang, C. Extension rate and bending behavior of electrospinning jet: The role of solution conductivity. Polymer 2021, 222, 123672.
[10] Chen, G. J.; Lai, H. Y.; Lu, P. H.; Chang, Y. C.; Wang, C. Light scattering of electrospinning jet with internal structures by flow-induced phase separation. Macromol. Rapid Commun. 2023, 44 (1), 2200273.
[11] Kulichikhin, V. G.; Malkin, A. Y.; Semakov, A. V.; Skvortsov, I. Y.; Arinstein, A. Liquid filament instability due to stretch-induced phase separation in polymer solutions: Liquid filament instability. Eur. Phys. J. E 2014, 37, 1–7.
[12] Uemura, Y.; Hashimoto, T.; Kawai, H. Application of light scattering from a dielectric cylinder based upon Mie and Rayleigh–Gans–Born theories to polymer systems. III. An application to polymer composites. Polym. J. 1979, 11, 413–423.
[13] Sun, Y.; Cheng, S.; Lu, W.; Wang, Y.; Zhang, P.; Yao, Q. Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Adv. 2019, 9 (44), 25712–25729.
[14] McCann, J. T.; Marquez, M.; Xia, Y. Highly porous fibers by electrospinning into a cryogenic liquid. J. Am. Chem. Soc. 2006, 128 (5), 1436–1437.
[15] Staudinger, H. Über Polymerisation. Ber. Dtsch. Chem. Ges. 1920, 53 (6), 1073–1085.
[16] Schweitzer, P. A.; MacDonald, R. N. Polyoxymethylene: A new engineering plastic. Ind. Eng. Chem. 1959, 51 (7), 883–888.
[17] Carazzolo, G. A. Structure of the normal crystal form of polyoxymethylene. J. Polym. Sci., Part A: Gen. Pap. 1963, 1 (5), 1573–1583.
[18] Kongkhlang, T.; Kotaki, M.; Kousaka, Y.; Umemura, T.; Nakaya, D.; Chirachanchai, S. Electrospun polyoxymethylene: Spinning conditions and its consequent nanoporous nanofiber. Macromolecules 2008, 41 (13), 4746–4752.
[19] Kongkhlang, T.; Tashiro, K.; Kotaki, M.; Chirachanchai, S. Electrospinning as a new technique to control the crystal morphology and molecular orientation of polyoxymethylene nanofibers. J. Am. Chem. Soc. 2008, 130 (46), 15460–15466.
[20] Stephens, J. S.; Chase, D. B.; Rabolt, J. F. Effect of the electrospinning process on polymer crystallization chain conformation in nylon-6 and nylon-12. Macromolecules 2004, 37 (3), 877–881.
[21] Nam, J.; Huang, Y.; Agarwal, S.; Lannutti, J. Materials selection and residual solvent retention in biodegradable electrospun fibers. J. Appl. Polym. Sci. 2008, 107 (3), 1547–1554.
[22] Zhang, F.; Zuo, B. Q.; Bai, L. Study on the structure of SF fiber mats electrospun with HFIP and FA and cells behavior. J. Mater. Sci. 2009, 44, 5682–5687.
[23] Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 2000, 87 (9), 4531–4547.
[24] Yarin, A. L.; Koombhongse, S.; Reneker, D. H. Bending instability in electrospinning of nanofibers. J. Appl. Phys. 2001, 89 (5), 3018–3026.
[25] Kwei, T. K.; Schonhorn, H.; Frisch, H. L. Dynamic Mechanical Properties of the Transcrystalline Regions in Two Polyolefins. J. Appl. Phys. 1967, 38 (6), 2512–2516.
[26] Bessell, T.; Hull, D.; Shortall, J. B. Interface Morphology and Mechanical Properties of Unidirectional Fibre Reinforced Nylon 6. Faraday Spec. Discuss. Chem. Soc. 1972, 2, 137–143.
[27] Campbell, D.; Qayyum, M. M. Enhanced Fracture Strain of Polypropylene by Incorporation of Thermoplastic Fibres. J. Mater. Sci. 1977, 12, 2427–2434.
[28] Hata, T.; Ohaska, K.; Yamada, T.; Shibata, N.; Matsumoto, T. Proc. 16th Annual Symposium, Adhesion Society, Williamsburg, VA, Feb 1993; p 180.
[29] Folkes, M. J.; Hardwick, S. T. Direct Study of the Structure and Properties of Transcrystalline Layers. J. Mater. Sci. Lett. 1987, 6, 656–658.
[30] Wang, C.; Liu, C.-R. Transcrystallization of Polypropylene Composites: Nucleating Ability of Fibers. Polymer 1999, 40 (2), 289–298
[31] Wang, C.; Liu, F.-H.; Huang, W.-H. Electrospun-Fiber Induced Transcrystallization of Isotactic Polypropylene Matrix. Polymer 2011, 52 (5), 1326–1336.
[32] Ishida, H.; Bussi, P. Induction Time Approach to Surface Induced Crystallization in Polyethylene/Poly(ε-caprolactone) Melt. J. Mater. Sci. 1991, 26, 6373–6382.
[33] Ishida, H.; Bussi, P. Surface Induced Crystallization in Ultrahigh-Modulus Polyethylene Fiber-Reinforced Polyethylene Composites. Macromolecules 1991, 24 (12), 3569–3577.
[34] Stockmayer, W. H.; Chan, L.-L. Solution properties of polyoxymethylene. J. Polym. Sci., Part A-2: Polym. Phys. 1966, 4 (3), 437–446.
[35] 王煜, “操作參數對電紡聚(異丙基丙烯醯胺)/二甲基甲醯胺溶液所得液柱直徑分佈的影響”,國立成功大學博士論文,(2018)
校內:2030-07-15公開