簡易檢索 / 詳目顯示

研究生: 王子豪
Wang, Tzu-Hao
論文名稱: 鎘抑制初級星狀膠質細胞中基質金屬蛋白酶2與9活性之研究
Reduction of matrix metalloproteinase-2 and -9 activity in primary rat astrocytes
指導教授: 曾淑芬
Tzeng, Shun-Fen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 75
中文關鍵詞: 星狀膠質細胞基質金屬蛋白酶
外文關鍵詞: matrix metalloproteinase, astrocytes, cadmium
相關次數: 點閱:116下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基質金屬蛋白酶 (MMPs) 可以分解所有的細胞外基質,調控細胞所必須的微環境 (microenviorment)。特別的是,MMPs在細胞計畫性死亡中扮演著令人困惑的角色,會同步顯現出促進凋亡及抗凋亡的作用。MMPs也會因特異性細胞附著的發生,藉由正向或負向調控生存訊息,影響細胞存活與增殖。星狀膠質細胞是主要產生MMPs的神經細胞,可以分泌出MMP-2與MMP-9。而MMP-2與MMP-9也被證實,會調控神經細胞的能動性,並和中樞神經系統的傷害與神經退化性疾病有關。鎘是個由現代工業所產生的重金屬污染物,在許多研究指出會造成神經毒性,並與中樞神經系統中一些神經退化性疾病的形成有關。在先前本實驗室研究發現,當處理的氯化鎘濃度超過20 M,會經由活性氧族群而非凋亡蛋白酵素 (caspase-3) 路徑,引起星狀膠質細胞死亡。在本實驗發現處理低於10 M的氯化鎘24小時後,會造成星狀膠質細胞MMP-2與MMP-9活性下降。而即使移除氯化鎘,抑制的作用仍持續存在。利用反轉錄聚合酶鏈與定量聚合酶鏈分析指出,氯化鎘抑制MMP-2活性是經由抑制MMP-2的轉錄。再經由反轉錄聚合酶鏈的分析發現,MMP-9基因表現上升會隨著氯化鎘處理濃度而增加。近一步發現處理細胞內與胞外鈣離子螯合劑,可以抵除氯化鎘對於MMP-2與MMP-9活性的影響,而證實鎘抑制MMP-2與MMP-9的活性,與鎘引起鈣離子訊息有關 (Yang et al., 2007)。雖然氯化鎘不會顯著改變星狀膠質細胞主要型態,但會降低細胞突起的星狀化。而外加rhMMP-2能移除氯化鎘對於星狀膠質細胞突起星狀化的影響。接著我們也探討甲基汞與鉻對於星狀膠質細胞MMP-2與MMP-9活性的影響。發現鉻對於MMP-2與MMP-9只有輕微的影響,而處理甲基汞0.1、0.5、1 M會導致MMP-2活性上升但對於MMP-9則沒有影響。綜合上述,我們發現氯化鎘會透過所引起的鈣離子訊息抑制星狀膠質細胞MMP-2與MMP-9的活性,而降低細胞突起星狀化,因此可能導致星狀膠質細胞功能的損壞。而不同的重金屬可能透過不同的訊息路徑,調控星狀膠質細胞MMP-2與MMP-9的活性。

    Matrix metalloproteinase (MMPs) can process virtually any component of the extracellular matrix (ECM), regulating essentially the cell’s microenvironment. In particular, it seems that MMPs play an intriguing role in program cell death, showing both apoptotic and anti-apoptotic action. MMPs affect cell survival and proliferation both positively and negatively by regulating survival signals generated by specific adhesive events. Astrocytes are the main source of MMPs among neural cells, can secrete MMP-2/MMP-9. The function of MMP-2 and MMP-9 is complex since they have been reported to involve neural cell motility/survival and CNS neurodegenerative diseases. Cadmium (Cd), a heavy metal generated by modern industry, has been reported to induce neurotoxicity, and Cd-induced injury is thought to be associated with CNS neurodegenerative disorders. The previous study from our laboratory has indicated that CdCl2 at the concentrations greater than 20 M induced astrocytic cell death via a caspase 3-independent/ROS-dependent pathway. In this study, we found that treatment of astrocytes with CdCl2 at the concentrations lower than 10 M for 24 h inhibited the activity of MMP-2 and MMP-9. Moreover, this inhibition sustained after CdCl2 removal. RT-PCR and Q-PCR analysis indicated that Cd-induced reduction in MMP-2 activity was resulted from the downregulation of MMP-2 transcription by CdCl2. Interestingly, RT-PCR indicated that MMP-9 mRNA expression was significantly increased by CdCl2 in a dose-dependent manner. Nevertheless, the inhibition of MMP-2/MMP-9 activity was involved in Cd-induced Ca2+ signaling pathway (Yang et al., 2007), because the addition of calcium chelators (EGTA and BAPTA-AM) abolished Cd effect on the MMP-2/MMP-9 activity. Although there was no significant change in the main body shape of astrocytes after CdCl2 treatment, less stellation was observed in Cd-treated astrocytes. We further found that Cd effect on astrocytic stellation was blocked by the addition of rhMMP-2. We also examined the effect of chromium and methylmercury on astrocytic MMP-2/MMP-9 activity. Chromium only slightly affected the MMP-2 activity in astrocytes. However, methylmercury at the concentrations (0.1, 0.5 and 1.0 M) which did not induce astrocytic toxicity increased MMP-2 activity, but had no effect on MMP-9 activity. In summary, our findings demonstrate that Cd-induced Ca2+ signaling contributes to the inhibition of astrocytic MMP-2/MMP-9 activity, and in turn reduces in astrocytic stellation which may impair astrocytic function. Moreover, distinct heavy metals have different effects on astrocytic MMP-2/MMP-9 activity, possibly due to distinctive cellular signaling pathways.

    目錄..................................................... 1 圖目錄................................................... 3 縮寫表................................................... 5 中文摘要................................................. 6 英文摘要................................................. 8 前言.................................................... 10 鎘的介紹................................................ 10 鎘的代謝................................................ 10 甲基汞的介紹............................................ 13 六價鉻的介紹............................................ 14 星狀膠質細胞的介紹...................................... 15 星狀膠質細胞之功能...................................... 15 MMPs的介紹.............................................. 16 (一) MMPs結構與成員..................................... 16 (二) MMPs在神經系統的角色............................... 20 (三)星狀膠質細胞所分泌的MMP-2與MMP-9.................. 23 實驗目的................................................ 24 材料與方法.............................................. 25 一、 材料........................................... 25 (一) 細胞培養材料................................... 25 (二) 化學藥品....................................... 25 (三) 試劑組......................................... 26 (四) 抗體........................................... 26 二、 方法........................................... 27 (一) 細胞培養....................................... 27 (二) 細胞之生長測定 (MTT assay).............. 27 (三) 明膠酶電泳分析法 (gelatine zymography)......... 27 (四) RNA萃取........................................ 28 (五) 反轉錄與聚合酶鏈反應........................... 29 (六) 定量聚合酶鏈反應............................... 30 (七) 細胞免疫螢光染色............................... 31 (八) 統計分析....................................... 31 結果.................................................... 33 一、 CdCl2對初級星狀膠質細胞毒性測試................ 33 二、 CdCl2降低初級星狀膠質細胞分泌的MMP-2和MMP-9活性 33 三、 MeHg與K2CrO4對於初級星狀膠質細胞毒性與MMP-2、MMP-9活性的影響...............................................34 四、 CdCl引起星狀膠質細胞內鈣離子上升影響與MMP-9的活性.......................................................36 五、 CdCl2抑制初級星狀膠質細胞MMP-2 mRNA基因表現.... 37 六、 CdCl2透過MMP-2調控第二型初級星狀膠細胞觸角延伸. 38 討論.................................................... 40 一、 重金屬對於初級星狀膠質細胞MMP-2與MMP-9活性的調控40 二、 CdCl2對於初級星狀膠質細胞MMP-2與MMP-9轉錄的影響.41 三、 MMP-2與MMP-9活性與初級星狀膠質細胞型態的影響....41 四、 MMP-2、MMP-9的改變可能參與重金屬造成中樞神經系統傷害.......................................................42 未來方向................................................ 43 參考文獻................................................ 44 圖一、CdCl2處理初級星狀膠質細胞24小時後細胞型態變化..... 53 圖二、CdCl2處理初級星狀膠質細胞24小時後對於細胞存活率之影響.... 54 圖三、CdCl2處理初級星狀膠質細胞24小時後對於MMP-2、MMP-9活性之檢測.................................................. 55 圖四、CdCl2處理星狀膠質細胞24小時後對於MMP-2、MMP-9活性之量化分析.................................................. 56 圖五、不同時間的CdCl2處理初級星狀膠質細胞後對於MMP-2、MMP-9活性之檢測.............................................. 57 圖六、不同時間的CdCl2處理星狀膠質細胞後對於MMP-2、MMP-9活性之量化分析.............................................. 58 圖七、MeHg處理初級星狀膠質細胞24小時後細胞型態變化 ..... 59 圖八、MeHg處理初級星狀膠質細胞24小時後對於細胞存活率之影響.......................................................60 圖九、MeHg處理初級星狀膠質細胞24小時後對於MMP-2、MMP-9活性之檢測.................................................. 61 圖十、MeHg處理星狀膠質細胞24小時後對於MMP-2、MMP-9活性之量化分析.................................................. 62 圖十一、K2CrO4處理初級星狀膠質細胞24小時後細胞型態變化.. 63 圖十二、K2CrO4處理初級星狀膠質細胞24小時後對於細胞存活率之影響.................................................... 64 圖十三、K2CrO4處理初級星狀膠質細胞24小時後對於MMP-2、MMP-9活性之檢測.............................................. 65 圖十四、K2CrO4處理星狀膠質細胞24小時後對於MMP-2、MMP-9活性之量化分析.............................................. 66 圖十五、使用細胞外鈣離子螯合劑EGTA、CdCl2處理星狀膠質細胞24小時後對於MMP-2、MMP-9活性之影響........................ 67 圖十六、使用細胞內鈣離子螯合劑BAPTA、CdCl2處理星狀膠質細胞24小時後對於MMP-2、MMP-9活性之影響...................... 68 圖十七、使用鈣離子載體A23187 (10~100 nM)處理星狀膠質細胞24小時後對於MMP-2、MMP-9活性之影響........................ 69 圖十八、CdCl2處理星狀膠質細胞24小時後對於MMP-2基因表現之影響...................................................... 70 圖十九、CdCl2處理星狀膠質細胞24小時後對於MMP-9基因表現之影響...................................................... 71 圖二十、培養於星狀膠質細胞24小時後的培養基經由CdCl2處理不同時間點後對於MMP-2活性之檢測分析..........................72 圖二十一、初級星狀膠質細胞對於不同時間的CdCl2處理再給予24小時復元後MMP-2活性之量化分析............................. 73 圖二十二、使用rhMMP-2、CdCl2處理星狀膠質細胞24小時後對於typeⅡ初級星狀膠質細胞型態的影響........................ 74 圖二十三、使用rhMMP-2 (100ng/ml)、CdCl2處理星狀膠質細胞24小時後對於MMP-2、MMP-9活性之影響...........................75

    Achanzar WE, Achanzar KB, Lewis JG, Webber MM, Waalkes MP (2000) Cadmium induces c-myc, p53, and c-jun expression in normal human prostate epithelial cells as a prelude to apoptosis. Toxicol Appl Pharmacol 164:291-300.
    Ahokas K, Lohi J, Illman SA, Llano E, Elomaa O, Impola U, Karjalainen-Lindsberg ML, Saarialho-Kere U (2003) Matrix metalloproteinase-21 is expressed epithelially during development and in cancer and is up-regulated by transforming growth factor-beta1 in keratinocytes. Lab Invest 83:1887-1899.
    Andre C, Truong TT, Robert JF, Guillaume YC (2005) Effect of metals on herbicides-alpha-synuclein association: a possible factor in neurodegenerative disease studied by capillary electrophoresis. Electrophoresis 26:3256-3264.
    Aschner M, Aschner JL (1990) Mercury neurotoxicity: mechanisms of blood-brain barrier transport. Neurosci Biobehav Rev 14:169-176.
    Bagchi D, Vuchetich PJ, Bagchi M, Hassoun EA, Tran MX, Tang L, Stohs SJ (1997) Induction of oxidative stress by chronic administration of sodium dichromate [chromium VI] and cadmium chloride [cadmium II] to rats. Free Radic Biol Med 22:471-478.
    Basun H, Lind B, Nordberg M, Nordstrom M, Bjorksten KS, Winblad B (1994) Cadmium in blood in Alzheimer's disease and non-demented subjects: results from a population-based study. Biometals 7:130-134.
    Benveniste EN (1992) Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am J Physiol 263:C1-16.
    Blankenship LJ, Carlisle DL, Wise JP, Orenstein JM, Dye LE, 3rd, Patierno SR (1997) Induction of apoptotic cell death by particulate lead chromate: differential effects of vitamins C and E on genotoxicity and survival. Toxicol Appl Pharmacol 146:270-280.
    Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120:303-313.
    Cataldo AM, Broadwell RD (1986) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes. J Neurocytol 15:511-524.
    Colton CA, Keri JE, Chen WT, Monsky WL (1993) Protease production by cultured microglia: substrate gel analysis and immobilized matrix degradation. J Neurosci Res 35:297-304.
    Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689-695.
    Davidson PW, Palumbo D, Myers GJ, Cox C, Shamlaye CF, Sloane-Reeves J, Cernichiari E, Wilding GE, Clarkson TW (2000) Neurodevelopmental outcomes of Seychellois children from the pilot cohort at 108 months following prenatal exposure to methylmercury from a maternal fish diet. Environ Res 84:1-11.
    Dzwonek J, Rylski M, Kaczmarek L (2004) Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain. FEBS Lett 567:129-135.
    English WR, Puente XS, Freije JM, Knauper V, Amour A, Merryweather A, Lopez-Otin C, Murphy G (2000) Membrane type 4 matrix metalloproteinase (MMP17) has tumor necrosis factor-alpha convertase activity but does not activate pro-MMP2. J Biol Chem 275:14046-14055.
    Eto K, Oyanagi S, Itai Y, Tokunaga H, Takizawa Y, Suda I (1992) A fetal type of Minamata disease. An autopsy case report with special reference to the nervous system. Mol Chem Neuropathol 16:171-186.
    Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298:556-562.
    Fowler BA (1972) Ultrastructural evidence for nephropathy induced by long-term exposure tosmall amounts of methyl mercury. Science 175:780-781.
    Garcia-Segura LM, Chowen JA, Naftolin F (1996) Endocrine glia: roles of glial cells in the brain actions of steroid and thyroid hormones and in the regulation of hormone secretion. Front Neuroendocrinol 17:180-211.
    Gasso S, Cristofol RM, Selema G, Rosa R, Rodriguez-Farre E, Sanfeliu C (2001) Antioxidant compounds and Ca(2+) pathway blockers differentially protect against methylmercury and mercuric chloride neurotoxicity. J Neurosci Res 66:135-145.
    Gottschall PE, Deb S (1996) Regulation of matrix metalloproteinase expressions in astrocytes, microglia and neurons. Neuroimmunomodulation 3:69-75.
    Gottschall PE, Yu X, Bing B (1995) Increased production of gelatinase B (matrix metalloproteinase-9) and interleukin-6 by activated rat microglia in culture. J Neurosci Res 42:335-342.
    Grandjean P, White RF, Nielsen A, Cleary D, de Oliveira Santos EC (1999) Methylmercury neurotoxicity in Amazonian children downstream from gold mining. Environ Health Perspect 107:587-591.
    Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186-1190.
    Habeebu SS, Liu J, Klaassen CD (1998) Cadmium-induced apoptosis in mouse liver. Toxicol Appl Pharmacol 149:203-209.
    Hart BA, Lee CH, Shukla GS, Shukla A, Osier M, Eneman JD, Chiu JF (1999) Characterization of cadmium-induced apoptosis in rat lung epithelial cells: evidence for the participation of oxidant stress. Toxicology 133:43-58.
    Hayashita-Kinoh H, Kinoh H, Okada A, Komori K, Itoh Y, Chiba T, Kajita M, Yana I, Seiki M (2001) Membrane-type 5 matrix metalloproteinase is expressed in differentiated neurons and regulates axonal growth. Cell Growth Differ 12:573-580.
    He CH, Gong P, Hu B, Stewart D, Choi ME, Choi AM, Alam J (2001) Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem 276:20858-20865.
    Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov SA, Mankani M, Robey PG, Poole AR, Pidoux I, Ward JM, Birkedal-Hansen H (1999) MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99:81-92.
    Hou P, Troen T, Ovejero MC, Kirkegaard T, Andersen TL, Byrjalsen I, Ferreras M, Sato T, Shapiro SD, Foged NT, Delaisse JM (2004) Matrix metalloproteinase-12 (MMP-12) in osteoclasts: new lesson on the involvement of MMPs in bone resorption. Bone 34:37-47.
    Hsiao HY, Mak OT, Yang CS, Liu YP, Fang KM, Tzeng SF (2007) TNF-alpha/IFN-gamma-induced iNOS expression increased by prostaglandin E2 in rat primary astrocytes via EP2-evoked cAMP/PKA and intracellular calcium signaling. Glia 55:214-223.
    Huang C, Zhang Q, Li J, Shi X, Castranova V, Ju G, Costa M, Dong Z (2001) Involvement of Erks activation in cadmium-induced AP-1 transactivation in vitro and in vivo. Mol Cell Biochem 222:141-147.
    Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253-257.
    Johnson S (2000) The possible role of gradual accumulation of copper, cadmium, lead and iron and gradual depletion of zinc, magnesium, selenium, vitamins B2, B6, D, and E and essential fatty acids in multiple sclerosis. Med Hypotheses 55:239-241.
    Joseph P, Muchnok TK, Klishis ML, Roberts JR, Antonini JM, Whong WZ, Ong T (2001) Cadmium-induced cell transformation and tumorigenesis are associated with transcriptional activation of c-fos, c-jun, and c-myc proto-oncogenes: role of cellular calcium and reactive oxygen species. Toxicol Sci 61:295-303.
    Jourquin J, Tremblay E, Decanis N, Charton G, Hanessian S, Chollet AM, Le Diguardher T, Khrestchatisky M, Rivera S (2003) Neuronal activity-dependent increase of net matrix metalloproteinase activity is associated with MMP-9 neurotoxicity after kainate. Eur J Neurosci 18:1507-1517.
    Kaur P, Aschner M, Syversen T (2006) Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes. Neurotoxicology 27:492-500.
    Kerkela E, Bohling T, Herva R, Uria JA, Saarialho-Kere U (2001) Human macrophage metalloelastase (MMP-12) expression is induced in chondrocytes during fetal development and malignant transformation. Bone 29:487-493.
    Kevorkian L, Young DA, Darrah C, Donell ST, Shepstone L, Porter S, Brockbank SM, Edwards DR, Parker AE, Clark IM (2004) Expression profiling of metalloproteinases and their inhibitors in cartilage. Arthritis Rheum 50:131-141.
    Kim SD, Moon CK, Eun SY, Ryu PD, Jo SA (2005) Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis. Biochem Biophys Res Commun 328:326-334.
    Kjellstrom T, Nordberg GF (1978) A kinetic model of cadmium metabolism in the human being. Environmental research 16:248-269.
    Kondoh M, Araragi S, Sato K, Higashimoto M, Takiguchi M, Sato M (2002) Cadmium induces apoptosis partly via caspase-9 activation in HL-60 cells. Toxicology 170:111-117.
    LaRochelle O, Gagne V, Charron J, Soh JW, Seguin C (2001) Phosphorylation is involved in the activation of metal-regulatory transcription factor 1 in response to metal ions. J Biol Chem 276:41879-41888.
    Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945-1948.
    Lemarie A, Lagadic-Gossmann D, Morzadec C, Allain N, Fardel O, Vernhet L (2004) Cadmium induces caspase-independent apoptosis in liver Hep3B cells: role for calcium in signaling oxidative stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor. Free Radic Biol Med 36:1517-1531.
    Liesi P, Hager G, Dodt HU, Seppala I, Zieglgansberger W (1995) Domain-specific antibodies against the B2 chain of laminin inhibit neuronal migration in the neonatal rat cerebellum. J Neurosci Res 40:199-206.
    Limke TL, Atchison WD (2002) Acute exposure to methylmercury opens the mitochondrial permeability transition pore in rat cerebellar granule cells. Toxicol Appl Pharmacol 178:52-61.
    Marchenko GN, Marchenko ND, Strongin AY (2003) The structure and regulation of the human and mouse matrix metalloproteinase-21 gene and protein. Biochem J 372:503-515.
    Marchenko ND, Marchenko GN, Weinreb RN, Lindsey JD, Kyshtoobayeva A, Crawford HC, Strongin AY (2004) Beta-catenin regulates the gene of MMP-26, a novel metalloproteinase expressed both in carcinomas and normal epithelial cells. Int J Biochem Cell Biol 36:942-956.
    Mertz W (1969) Chromium occurrence and function in biological systems. Physiol Rev 49:163-239.
    Mertz W (1993) Chromium in human nutrition: a review. J Nutr 123:626-633.
    Miller RH, Abney ER, David S, Ffrench-Constant C, Lindsay R, Patel R, Stone J, Raff MC (1986) Is reactive gliosis a property of a distinct subpopulation of astrocytes? J Neurosci 6:22-29.
    Misra UK, Gawdi G, Akabani G, Pizzo SV (2002) Cadmium-induced DNA synthesis and cell proliferation in macrophages: the role of intracellular calcium and signal transduction mechanisms. Cell Signal 14:327-340.
    Molnar G, Salanki J, Kiss T (2004) Cadmium inhibits GABA-activated ion currents by increasing intracellular calcium level in snail neurons. Brain Res 1008:205-211.
    Momohara S, Okamoto H, Komiya K, Ikari K, Takeuchi M, Tomatsu T, Kamatani N (2004) Matrix metalloproteinase 28/epilysin expression in cartilage from patients with rheumatoid arthritis and osteoarthritis: comment on the article by Kevorkian et al. Arthritis Rheum 50:4074-4075; author reply 4075.
    Mun-Bryce S, Rosenberg GA (1998) Matrix metalloproteinases in cerebrovascular disease. J Cereb Blood Flow Metab 18:1163-1172.
    Murphy G, Segain JP, O'Shea M, Cockett M, Ioannou C, Lefebvre O, Chambon P, Basset P (1993) The 28-kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase. J Biol Chem 268:15435-15441.
    Myers GJ, Davidson PW (1998) Prenatal methylmercury exposure and children: neurologic, developmental, and behavioral research. Environ Health Perspect 106 Suppl 3:841-847.
    Nguyen Q, Willenbrock F, Cockett MI, O'Shea M, Docherty AJ, Murphy G (1994) Different domain interactions are involved in the binding of tissue inhibitors of metalloproteinases to stromelysin-1 and gelatinase A. Biochemistry 33:2089-2095.
    Ogier C, Bernard A, Chollet AM, T LED, Hanessian S, Charton G, Khrestchatisky M, Rivera S (2006) Matrix metalloproteinase-2 (MMP-2) regulates astrocyte motility in connection with the actin cytoskeleton and integrins. Glia 54:272-284.
    Oh LY, Larsen PH, Krekoski CA, Edwards DR, Donovan F, Werb Z, Yong VW (1999) Matrix metalloproteinase-9/gelatinase B is required for process outgrowth by oligodendrocytes. J Neurosci 19:8464-8475.
    Oh SH, Lim SC (2006) A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation. Toxicol Appl Pharmacol 212:212-223.
    Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 272:2446-2451.
    Pei D, Weiss SJ (1995) Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375:244-247.
    Pei D, Majmudar G, Weiss SJ (1994) Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3. J Biol Chem 269:25849-25855.
    Pei D, Kang T, Qi H (2000) Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. J Biol Chem 275:33988-33997.
    Pham TN, Marion M, Denizeau F, Jumarie C (2006) Cadmium-induced apoptosis in rat hepatocytes does not necessarily involve caspase-dependent pathways. Toxicol In Vitro 20:1331-1342.
    Qin H, Sun Y, Benveniste EN (1999) The transcription factors Sp1, Sp3, and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells. J Biol Chem 274:29130-29137.
    Raff MC, Abney ER, Miller RH (1984) Two glial cell lineages diverge prenatally in rat optic nerve. Dev Biol 106:53-60.
    Rivera S, Khrestchatisky M (1999) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuronal plasticity and pathology. The MIT Press:53–86.
    Robertson JD, Orrenius S (2000) Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit Rev Toxicol 30:609-627.
    Rosenberg GA, Cunningham LA, Wallace J, Alexander S, Estrada EY, Grossetete M, Razhagi A, Miller K, Gearing A (2001) Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res 893:104-112.
    Ryu OH, Fincham AG, Hu CC, Zhang C, Qian Q, Bartlett JD, Simmer JP (1999) Characterization of recombinant pig enamelysin activity and cleavage of recombinant pig and mouse amelogenins. J Dent Res 78:743-750.
    Saarialho-Kere U, Kerkela E, Jahkola T, Suomela S, Keski-Oja J, Lohi J (2002) Epilysin (MMP-28) expression is associated with cell proliferation during epithelial repair. J Invest Dermatol 119:14-21.
    Sadowski T, Dietrich S, Muller M, Havlickova B, Schunck M, Proksch E, Muller MS, Sedlacek R (2003) Matrix metalloproteinase-19 expression in normal and diseased skin: dysregulation by epidermal proliferation. J Invest Dermatol 121:989-996.
    Sarafian TA (1993) Methyl mercury increases intracellular Ca2+ and inositol phosphate levels in cultured cerebellar granule neurons. J Neurochem 61:648-657.
    Sato H, Kita M, Seiki M (1993) v-Src activates the expression of 92-kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements. A mechanism regulating gene expression independent of that by inflammatory cytokines. J Biol Chem 268:23460-23468.
    Saydam N, Adams TK, Steiner F, Schaffner W, Freedman JH (2002) Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription. J Biol Chem 277:20438-20445.
    Sedlacek R, Mauch S, Kolb B, Schatzlein C, Eibel H, Peter HH, Schmitt J, Krawinkel U (1998) Matrix metalloproteinase MMP-19 (RASI-1) is expressed on the surface of activated peripheral blood mononuclear cells and is detected as an autoantigen in rheumatoid arthritis. Immunobiology 198:408-423.
    Shanker G, Mutkus LA, Walker SJ, Aschner M (2002) Methylmercury enhances arachidonic acid release and cytosolic phospholipase A2 expression in primary cultures of neonatal astrocytes. Brain Res Mol Brain Res 106:1-11.
    Shipley JM, Wesselschmidt RL, Kobayashi DK, Ley TJ, Shapiro SD (1996) Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci U S A 93:3942-3946.
    Shukla A, Shukla GS, Srimal RC (1996) Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum Exp Toxicol 15:400-405.
    Shukla GS, Singhal RL (1984) The present status of biological effects of toxic metals in the environment: lead, cadmium, and manganese. Can J Physiol Pharmacol 62:1015-1031.
    Stearns DM, Belbruno JJ, Wetterhahn KE (1995) A prediction of chromium(III) accumulation in humans from chromium dietary supplements. Faseb J 9:1650-1657.
    Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321-336.
    Stohs SJ, Bagchi D, Hassoun E, Bagchi M (2000) Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 19:201-213.
    Stracke JO, Hutton M, Stewart M, Pendas AM, Smith B, Lopez-Otin C, Murphy G, Knauper V (2000) Biochemical characterization of the catalytic domain of human matrix metalloproteinase 19. Evidence for a role as a potent basement membrane degrading enzyme. J Biol Chem 275:14809-14816.
    Tallkvist J, Persson E, Henriksson J, Tjalve H (2002) Cadmium-metallothionein interactions in the olfactory pathways of rats and pikes. Toxicol Sci 67:108-113.
    Tejima E, Zhao BQ, Tsuji K, Rosell A, van Leyen K, Gonzalez RG, Montaner J, Wang X, Lo EH (2007) Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage. J Cereb Blood Flow Metab 27:460-468.
    Travacio M, Polo JM, Llesuy S (2001) Chromium (VI) induces oxidative stress in the mouse brain. Toxicology 162:139-148.
    Tzeng SF, Lee JL, Kuo JS, Yang CS, Murugan P, Ai Tai L, Chu Hwang K (2002) Effects of malonate C60 derivatives on activated microglia. Brain Res 940:61-68.
    Valois AA, Webster WS (1987) The choroid plexus and cerebral vasculature as target sites for cadmium following acute exposure in neonatal and adult mice: an autoradiographic and gamma counting study. Toxicology 46:43-55.
    Velasco G, Pendas AM, Fueyo A, Knauper V, Murphy G, Lopez-Otin C (1999) Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J Biol Chem 274:4570-4576.
    Verity MA, Sarafian T, Pacifici EH, Sevanian A (1994) Phospholipase A2 stimulation by methyl mercury in neuron culture. J Neurochem 62:705-714.
    Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827-839.
    von Burg R, Liu D (1993) Chromium and hexavalent chromium. J Appl Toxicol 13:225-230.
    Watkin RD, Potts RJ, Hart BA (2001) Cadmium-induced up-regulation of Egr-1 in alveolar epithelial cells. Toxicologist 60:211.
    Watkin RD, Nawrot T, Potts RJ, Hart BA (2003) Mechanisms regulating the cadmium-mediated suppression of Sp1 transcription factor activity in alveolar epithelial cells. Toxicology 184:157-178.
    Wetzel M, Rosenberg GA, Cunningham LA (2003) Tissue inhibitor of metalloproteinases-3 and matrix metalloproteinase-3 regulate neuronal sensitivity to doxorubicin-induced apoptosis. Eur J Neurosci 18:1050-1060.
    Yang CS, Tzou BC, Liu YP, Shyue S, K, Tzeng SF (2007) Inhibition of cadmium-induced oxidative injury in rat primary astrocytes by the addition of antioxidants and the reduction of intracellular calcium. Journal of Cellular Biochemistry.
    Yang M, Kurkinen M (1998) Cloning and characterization of a novel matrix metalloproteinase (MMP), CMMP, from chicken embryo fibroblasts. CMMP, Xenopus XMMP, and human MMP19 have a conserved unique cysteine in the catalytic domain. J Biol Chem 273:17893-17900.
    Yang M, Murray MT, Kurkinen M (1997) A novel matrix metalloproteinase gene (XMMP) encoding vitronectin-like motifs is transiently expressed in Xenopus laevis early embryo development. J Biol Chem 272:13527-13533.
    Yasutake A, Nakano A, Miyamoto K, Eto K (1997) Chronic effects of methylmercury in rats. I. Biochemical aspects. Tohoku J Exp Med 182:185-196.
    Yin KJ, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X, Bateman R, Song H, Hsu FF, Turk J, Xu J, Hsu CY, Mills JC, Holtzman DM, Lee JM (2006) Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 26:10939-10948.
    Zalups RK (2000) Molecular interactions with mercury in the kidney. Pharmacol Rev 52:113-143.

    下載圖示 校內:2012-07-04公開
    校外:2012-07-04公開
    QR CODE