簡易檢索 / 詳目顯示

研究生: 林易陞
Lin, Yi-Sheng
論文名稱: 福爾摩沙量子通訊衛星的概念性設計
The Conceptual Design of Formosa Quantum Satellite
指導教授: 楊憲東
Yang, Ciann-Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 137
中文關鍵詞: 量子通訊福爾摩沙衛星量子糾纏單光子
外文關鍵詞: quantum communication, Formosa satellite, quantum entanglement, single photon
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量子通訊衛星的出現代表全球量子通訊網路時代即將來臨,量子通訊的物理基礎是量子糾纏態的非定域特性,此特性表明二個糾纏粒子不管被分隔多遠,只要它們仍保持在糾纏態,它們之間的量子瞬間關聯性就不會改變。除了非定域特性,單光子的不可分割性和量子態的不可複製特性確保了量子訊息無法被竊聽的絕對安全性。
      本論文對福爾摩沙量子通訊衛星提出概念性的設計,首先介紹量子通訊衛星的架構及其運作方法,然後再對量子通訊衛星內的量子元件如糾纏源、單光子源、單光子探測器做比較並且選擇適合用於量子通訊衛星上的設備;透過衛星動態軌跡來分析衛星通過兩個地面站的距離與時間關係,接著分析量子通訊實驗的運作,再將量子通訊實驗所需元件與台灣自主研發的福衛五號結合,對傳統衛星及量子通訊衛星進行比較,選擇可以延用至量子通訊衛星的福衛五號設備,最後形成一個台灣專有的福爾摩沙量子通訊衛星。
    中國在2016年所發射的墨子號量子通訊實驗衛星為量子通訊的一大進展,雖然台灣自主研發的福爾摩沙光學遙測衛星已來到福衛五號,但國內關於量子通訊衛星的研究尚未啟動,為了使台灣提早進入量子通訊衛星的研究,並與未來量子通訊衛星的發展趨勢結合,本論文的研究成果將提供下列四項未來台灣自主研發量子通訊衛星的參考:
    1.量子通訊衛星架構及運作方法。
    2.量子通訊衛星關鍵技術元件的分析與比較。
    3.適合用於太空中的量子通訊設備的選擇。
    4.福爾摩沙量子通訊衛星的概念性設計。

    As the appearance of quantum communication satellites, it represents the dawn of the global quantum communication network. The physical basis of quantum communication is the non-local characteristic of quantum entanglement. This characteristic shows that the quantum momentary correlation between two particles will not change no matter how far apart they are separated, as long as they remain in an entangled state. In addition to the non-local features, the indivisibility of single photons and the no-cloning characteristic of the quantum states ensure the absolute security that quantum information cannot be eavesdropped.
    China's Mozi quantum communication experimental satellite launched in 2016 is a major advancement in quantum communication. Although Taiwan's independent research and development of Formosa optical telemetry satellite has come to Fu wei No.5, the study on quantum communication satellites has not started. In order to enable Taiwan to advance into the research of quantum communication satellites and combine it with the development trend of future quantum communication satellites, the research results of this thesis hopefully provide the following useful information:
    1.Architecture and operation method of quantum communication satellite.
    2.Analysis and comparison of key technology elements of quantum communication satellites.
    3.Choice of quantum communication equipment suitable for operation in space.
    4.Conceptual design of the Formosa quantum communication satellite.

    摘要 I The Conceptual Design of Formosa Quantum Satellite II 致謝 VII 目錄 VIII 圖目錄 XI 表目錄 XVI 符號表 XVII 第 1 章 緒論 1 1.1量子通訊 1 1.2背景及文獻回顧 3 1.3研究動機 3 1.4文章架構 5 第2章 量子通訊衛星的組成與操作原理 7 2.1量子通訊衛星組成 7 2.1.1衛星本體架構 7 2.1.2地面站架構 11 2.2量子通訊衛星的運作原理 12 2.2.1太陽同步軌道 12 2.2.2量子通訊衛星運作於太陽同步軌道的優勢 14 2.2.3衛星動態軌跡 17 第3章 製備糾纏光子及儲存量子訊息 21 3.1量子糾纏現象 21 3.2 糾纏光子對的製備 21 3.3量子訊息的儲存 26 第4章 單光子探測器與單光子源 28 4.1單光子源 28 4.1.1單光子源產生方法 29 4.1.2量子點單光子源 31 4.2單光子探測系統 33 4.2.1單光子探測器系統結構 34 4.2.2各類型單光子探測技術 35 4.3單光子探測器性能對量子密鑰分發系統的影響 41 第5章 量子通訊實驗 44 5.1量子線路及量子邏輯閘 44 5.2量子隱形傳態 46 5.2.1量子隱形傳態操作 47 5.2.2星地間量子隱形傳態 49 5.3量子密鑰分發 52 5.3.1量子密鑰分發操作 52 5.3.2星地間量子密鑰分發 54 5.3.3大氣對量子密鑰分發系統的影響 61 第6章 量子中繼系統 67 6.1糾纏交換及糾纏純化 67 6.1.1糾纏交換 67 6.1.2糾纏純化 70 6.2量子中繼系統性能分析 72 第7章 福爾摩沙量子通訊衛星 77 7.1福衛五號與量子通訊衛星 77 7.1.1福衛五號傳統光學通訊衛星 77 7.1.2墨子號量子通訊實驗衛星 80 7.1.3傳統/量子光學通訊衛星之差異 83 7.2福爾摩沙量子通訊衛星設計初探 85 7.2.1福衛五號元件延用至量子通訊衛星 85 7.2.2衛星與地面站量子元件選擇 86 7.2.3福爾摩沙量子通訊衛星架構 94 7.2.4量子通訊衛星與地面站間的鏈路衰減分析 101 7.2.5量子通訊衛星的量子誤碼率與密鑰產生率分析 102 7.3福爾摩沙量子通訊衛星運作流程 110 7.3.1衛星與地面站量子隱形傳態流程 111 7.3.2衛星與地面站量子密鑰分發流程 118 7.3.3二個地面站間的量子隱形傳態流程 120 第8章 總結 123 8.1結果與討論 123 8.2未來展望 124 參考文獻 125 附錄A 131

    [1]Bing-jie Xu, Wen-lin Liu,Jun-qing Mao, yan Yang, Research on Development Status and Existing Problems of Quantum Communication Technology, Communications Technology., Vol 47:463-468, 2014.
    [2]A. Mair, J. Hager, D. F. Phillips, R. L. Walsworth, and M. D. Lukin, Phase coherence and control of stored photonic information, Phys. Rev. A.65:1-4, 2002.
    [3]Yong-Fan Chen, Storage and Manipulation of Photonic Information with Slow Light Effect.,光學工程,第九十七期, 20-30, 2007
    [4]Shan-Guo Huang, Wan-Yi Gu, Hai-Qiang Ma, Effects of detuning on the storage of a light pulse in an ultracold atomic medium, ACTA PHYSICA SINICA,Vol. 53, No. 12:4211-4217, 2004.
    [5]A. Einstein, B. Podolsky, N. Rosen. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Phys.Rev, 47(10):777-780, 1935.
    [6]E. Schrödinger, M. Born. Discussion of probability relations between separated systems, Mathematical Proceedings of the Cambridge Philosophical Society, 31 (4): 555–563, 1935.
    [7]A. Aspect, P. Grangier, and G. Roger., Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedanken-experiment: A New Violation of Bell's Inequalities., Physical Review Letters, 49(2):91-94, 1982.
    [8]Alessandro Zavatta, Silvia Viciani and Marco Bellini. Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection, Physical Review A, 70(5):1-6, 2004.
    [9]Christopher Gerry, Peter Knight. Introductory Quantum Optics. Cambridge University Press, 2005.
    [10]Anton Zeilinger. The super-source and closing the communication loophole. Dance of the Photons: From Einstein to Quantum Teleportation. Farrar, Straus and Giroux. 12 Oct. 2010.
    [11]P. Kwiat et al., New High-Intensity Source of Polarization-Entangled Photon Pairs, Phys. Rev. Lett, 75(24):4337-4341, 1995
    [12]A. Hayat, P. Ginzburg, M. Orenstein. Observation of Two-Photon Emission from Semiconductors, Nature Photon, 238-241, 2008.
    [13]Gernot Pfanner, et al. Entangled photon sources based on semiconductor quantum dots: The role of pure dephasing. Phys. Rev. B.78: 1-8, 2008.
    [14]J. M. Raimond, et al. Manipulating quantum entanglement with atoms and photons in a cavity, Reviews of Modern Physics, 73(3):565-582, 2001.
    [15]Rainer Blatt, David Wineland. Entangled states of trapped atomic ions, Nature, 453:1008-1015, 2008.
    [16]Yan Li, Chengjie Zhu, L. Deng, E.W. Hagley, W.R. Garrett,Versatile, dynamically balanced low-noise optical field phase-shifting manipulated using a coherently-prepared three-level atomic medium, Optics Letters, Vol. 66, No. 2, 2015.
    [17]管希聖, 淺談量子資訊與量子計算, 物理雙月刊, 30卷5期:497-597, 2008.
    [18]王丹.,相干原子介质内的光操控及量子关联光场,山西大學博士學位論文, 2016
    [19]Zhong-qing Wang, LI Jing., DAI Li, XUE Hao, Study of the stored photonic information based on the technique of electromagnetically induced transparency, Journal of Chongqing University of Posts and Telecommunications, Vol. 22, No 3:317-321, 2010.
    [20]Jin Xiong, Yi-cong Zheng, Gui-hua Zeng, Quantum Light Memory Using Quantum Dot Spins in Microdisk Cavity, Vol.13, No.6:647-652, 2007.
    [21]陳易馨、余怡德, 慢光與光儲存在量子資訊科學之應用,物理雙月刊, 三十卷五期, 524-532, 2008
    [22]Jun-Tao Chang, Ling-An Wu, Absolute self-calibration of the quantum efficiency of single-photon detectors, ACTA PHISICA SINICA, Vol. 52, No. 5:1132-1136, 2003.
    [23]Sebastian Unsleber, Qauntun dot-micropillars: A bright source of coherent single photons, 2016 IEEE Photonics Conference, 212-213, 2016
    [24]Yury Lobanov, Michael Shcherbatenko, Alexander Semenov, Vadim Kovalyuk, Oliver Kahl, Simone Ferrari, Alexander Korneev, Roman Ozhegov, Natalia Kaurova, Boris M. Voronov, Wolfram H. P. Pernice, and Gregory N. Gol’tsman, Superconducting Nanowire Single Photon Detector for Coherent Detection of Weak Signals, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 27, NO. 4, 2017.
    [25]Qing-lin Wu, Yun Liu, Wei Chen, Zheng-fu Han, Ke-yi Wang, Guang-can Guo, Advanced Single-Photon Detector Technologies, PROGRESS IN PHYSICS, Vol. 30, No. 3:296-306, 2010.
    [26]Xiaojuan Qin, Xinrong Shi, Jindong Wang, Zhengjun Wei, Influence of single photon detector on performance of quantum key distribution system, HIGH POWER LASER AND PARTICLE BEAMS, Vol. 22, No. 7:1661-1664, 2010.
    [27]Chu-Hsuan Lin, CheeWee Liu, SiGe MOS Photodetector, 科儀新知,第二十九卷第四期, 31-37, 2008
    [28]Wei Liu, Fu-Hua Yang, Near infrared single-photon detection, 量子计算和量子信息专题, Vol. 12, No. 39:825-831, 2010.
    [29]Chuang Liang, Jing Liao, Bing Liang, Lingan Wu, Performance of a Silicon Avalanche Diode as a Single Photon Detector, ACTA PHOTONICA SINICA, Vol. 29, No. 12:1142-1147, 2000.
    [30]Deng-kuan Liu, Si-jing Chen, Li-xing You, Yu-hao He, Ling Zhang, Fiber coupling of superconducting nanowire single-photon detectors, Optics and Precision Engineering, Vol. 21, No. 6:1496-1502, 2013.
    [31]Jin-yun Zhou, Xiao-dong Peng, Peng-fei Zhang, Qing-hua Lin, Chang-jun Liao, Song-hao Liu, Design of single-photon detection system used quantum cryptography communication, Opto-Electronic Engineering, Vol. 31, No. 7:31-34, 2004.
    [32]Hao Wang, Chang-jun Liao, Jin-dong Wang, Song-hao Liu, SINGLE-PHOTON SOURCE OF QUANTUM DOT AND ITS MANIFACTURE METHOD, PROGRESS IN PHYSICS, Vol. 25, No. 4:441-451, 2005.
    [33]Hong-Pei Wang, Guang-Long Wang, Hai-Qiao Ni, Ying-Qiang Xu, Zhi-Chuan Niu, Feng-Qi Gao, Quantum-dot gated field effect enhanced single-photon detectors, Acta Phys. Sin., Vol. 62, No. 19, 194205:1-6, 2013.
    [34]戴嘉邑, 標準CMOS製程之單光子偵測器, 國立交通大學電子工程學系電子研究所碩士班, 2010.
    [35]Sebastian Nauerth, FlorianMoll, Markus Rau, Christian Fuchs, Joachim Horwath, Stefan Frick and Harald Weinfurter, Air-to-ground quantum communication, Nature Phtonics, Vol.7:382-386, 2013.
    [36]Tobias Schmitt-Manderbach, HenningWeier, Martin Furst, Rupert Ursin, Felix Tiefenbacher, Thomas Scheidl, Josep Perdigues, Zoran Sodnik, Christian Kurtsiefer, John G. Rarity, Anton Zeilinger, and Harald Weinfurter, Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km, PHYSICAL REVIEW LETTERS, 010504:1-4, 2007.
    [37]C. H. Bennett and G. Brassard. "Quantum cryptography: Public key distribution and coin tossing". In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Vol. 175:8, 1984
    [38]Sheng-Kai Liao, et al., Satellite-to–ground quantum key distribution, Nature, Vol. 549:43-47, 2017.
    [39]Ji-Gang Ren, et al., Ground-to-satellite quantum teleportation, Nature, Vol. 549:70-73, 2017.
    [40]Yi Yan, Chang-xing Pei, Rui-juan Shi, Bao-bin Han, Lei Zhang, Study of quantum communication systems used for free space, JOURNAL OF XIDIAN UNIVERSITY, Vol. 34, No. 5:708-711, 2007
    [41]Jin-Jun Chen, Ling-An Wu, Heng Fan, Quantum and classical cryptography,《物理》, Vol. 3, No. 46:138-144, 2017.
    [40]Jiajia Wang, Hanwu Chen, Wenqian Li, Zhiqiang Li, Wenjie Liu, Simulation technique of quantum compute and quantum logical circuit, JOURNAL OF SOUTHEAST UNIVERSITY, Vol. 37, No. 3:380-384, 2007.
    [42]Chang-xing Pei, Yi Yan, Dan Liu, Bao-bin Han, Nan Zhao, A Quantum Repeater Communication System Based on Entanglement, ACTA PHOTONICA SINICA, Vol. 37, No. 12:2422-2423,2008.
    [43]William J. Munro, Koji Azuma, Kiyoshi Tamaki, and Kae Nemoto, Inside Quantum Repeater, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS. Vol. 2. No. 3, 2015.
    [44]Yingwen Zhang, et al., Simultaneous entanglement swapping of multiple orbital angular momentum states of light, Nature Communication, Vol.8, No.623:1-7, 2017.
    [45]Erik Kerstel, Arnaud Gardelein, Mathieu Barthelemy, The CSUG Team, Matthias Fink, Siddarth Koduru Joshi, Rupert Ursin, Nanobob: A Cubesat Mission Concept For Quantum Communication Experiments In An Uplink Configuration, 1-34, 2017.
    [46]Markus Aspelmeyer, Thomas Jennewein, Martin Pfennigbauer, Walter R. Leeb, and Anton Zeilinger, Long-Distance Quantum Communication With Entangled Photons Using Satellites, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, Vol. 9, No. 6:1541-1551, 2003.
    [47]Oi et al., CubeSat quantum communications mission, EPJ Quantum Technol, Vol.4, No.6:1-22, 2017
    [48]Neumann et al., Q^3Sat: quantum communications uplink to a 3U CubeSat-feasibility & design, EPJ Quantum Technology, Vol.5, No.4, 1-242018.
    [49]Rakhitha C.M.R.B. Chandrasekara, Robert Bedington, Xueliang Bai, Karthik Ilangovan, Yau Yong Sean, Denis Naughton, Simon Barraclough, Douglas Griffin, Russell Boyce, Alexander Ling, DEMONSTRATING MINIATURISED, ENTANGLED PHOTON-PAIR SOURCES ON BOARD NANO SATELLITES TO ENABLE FUTURE QKD MISSIONS, 68th International Astronautical Congress (IAC), 25-29, 2017.
    [50]Xiongfeng Ma, Chi-Hang Fred Fung, and Hoi-Kwong Lo, Quantum key distribution with entangled photon sources, Phys. Rev. A. 76:1-23, 2007.
    [51]J G Rarity et al., Ground to satellite secure key exchange using quantum cryptography, New J. Phys. 4:82.1-82.21, 2002.
    [52]Fabian Steinlechner, Source of Photonic Entanglement for Applications in Space, ICFO-INSTITUT DE CIE` NCIES FOTO NIQUES & UPC-UNIVERSITAT POLIT `ECNICA DE CATALUNYA, 2015.
    [53]James A. Grieve, Robert Bedington, Rakhitha C.M.R.B. Chandrasekar, Alexander Ling, SPOOQYSATS: CUBESATS TO DEMONSTRATE QUANTUM KEY DISTRIBUTION TECHNOLOGIES, 68th International Astronautical Congress (IAC), 2017.
    [54]蔡東宏,淺談福爾摩沙衛星五號, 天文館期刊, 第七十一期, 16-23, 2016.
    [55]劉小菁, 曾世平, 林喆, 張和本, 福衛五號遙測酬載系統工程經驗, 航測及遙測學刊, 第十八卷, 第1期, 29-38, 2014.
    [56]蘇盟傑, 量子通訊衛星的運作與模擬, 國立成功大學碩士論文, 2017
    [57]Hoi-Kwong Lo, Marcos Curty and Kiyoshi Tamak, Secure quantum key distribution, Nature Photonics, Vol. 8:595-604, 2014.
    [58]Markus, A., Thomas, J., Martin, P., et al., Long-Distance Quantum Communication With Entangled Photons Using Satellites, IEEE, Vol. 9, 1541-1551, 2003.
    [59]Ronald J. Boain, A-B-Cs of Sun-Synchronous Orbit Mission Design, 〖14〗^th AAS/AIAA Space Flight Mechanics Conference, 8-12, 2004.

    無法下載圖示 校內:2023-07-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE