簡易檢索 / 詳目顯示

研究生: 謝承鎰
Hsieh, Cheng-Yi
論文名稱: 疏水/親油紡織品分離膜的油-水乳液分離機制之探討
Separation mechanisms of hydrophobic/oleophilic fabrics for oil-water emulsions
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 112
中文關鍵詞: 疏水/親油分離膜油-水分離分離機制水在油中 (W/O) 乳化液油在水中 (O/W) 乳化液
外文關鍵詞: Hydrophobic/oleophilic separation membrane, oil-ware separation, separation mechanism, water-in-oil(W/O) emulsion, oil-in-water(O/W) emulsion
相關次數: 點閱:121下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑒於傳統油-水分離方法的缺點,利用表面特殊潤濕性的創造,可望開發出新穎的油-水分離方法。透過表面特殊潤濕性油-水分離機制的深入探討,更預期可以設計出高效率、降低能源消耗和快速簡單的分離程序。本研究以聚酯纖維紡織品做為基材,水性鐵氟龍分散液 (PTFE DISP)為浸鍍液,透過不同濃度及不同的塗佈次數,將其修飾成疏水/親油的分離膜。並用以處理不含界面活性劑 (surfactant-free) 的水在油中 (W/O) 及油在水中 (O/W) 乳化液。利用水滴的靜態接觸角及滑落角鑑定分離膜的疏水潤濕型態(Meta或Wenzel),並測定分離膜的分離成效,探討其分離機制。
    研究結果顯示,聚酯纖維紡織品經由PTFE DISP (30, 40, 60 wt%) 分別塗佈2和3次,可以成功分離水在甲苯中 (W/O) 乳化液。在分離機制的探討中顯示,表面的孔徑大小是決定分離與否成功的主要因素,若表面孔徑太大,會使得乳化液直接通過分離膜並依然呈現乳白色;若孔徑足夠小,水滴得以被分離,過濾液會變成澄清無色。而且在分離過程中,因為甲苯會潤濕分離膜,因此,分離前類似蓮葉或玫瑰花瓣的表面在分離過程中會轉變成類似豬籠草口緣的滑溜表面。由於疏水機制事實上已經轉變,原本乾的分離膜的潤濕型態並不會影響到分離效能。此外,若處理大量乳化液時,會因為被分離出來的小水滴累積成水層,進而阻隔乳化液與分離膜的接觸。此時,可以將分離裝置傾斜,使水滴滑落,露出乾淨的分離膜表面,使得分離得以持續進行。
    另外,聚酯纖維紡織品經由PTFE DISP (30, 40, 60 wt%) 塗佈1~3次的分離膜皆可以成功分離甲苯在水中 (O/W) 的乳化液。但是,成功分離的主要因素是油滴接觸到疏水/親油分離膜的機率,並非受到分離膜本身的潤濕型態或孔徑大小的影響。本研究透過在乳化液上方加裝攪拌葉,增加油滴接觸分離膜的機率,促使原本無法分離的O/W乳化液得以成功分離。結果也顯示轉速越高,分離時間就越短。另外,分離大量O/W乳化液時,分離膜先是被甲苯潤濕而達到飽和,繼而過多的甲苯會通過分離膜被分離。

    In view of disadvantages of traditional methods for oil-water separation, it’s expected to develop novel method by creating special wettability surface. Through the discussion of oil-water separation mechanisms of special wettability surface, it can be expected to deign a separation procedure with high efficiency, low energy consumption and simple method. In our research, we create the hydrophobic/oleophilic membrane by coating PTFE dispersion with different concentration and coating times. The separation membranes are used to separate surfactant-free W/O(water-in-oil) and O/W(oil-in-water) emulsions.
    From the experimental results, separation membranes coated by PTFE DISP(30, 40, 60 wt%) with twice and three coating times are successful to separate water-in-toluene emulsions. And discussion on separation mechanism, pore size is the main factor to dominate the separation whether is successful or failed. Furthermore, there exists water repellency transition during separation process. Since toluene wets the separation membrane, the surface would become slippery surface Owing to this transition, the wetting modes of dry surfaces don’t influence the separation. In addition, in case of separating large amounts of emulsions, water would become an layer to resist the emulsion to be separated. Therefore, the separation device could be tilted and then remove water from device.
    Separation membranes coated by PTFE DISP(30, 40 , 60 wt%) with 1~3 coating times can separate toluene-in-water emulsion. However, contact probability of oil droplets with separation membrane is the main factor to dominate the separation. We add a stirring blade above the emulsion to increase the contact probability in this study. When we increase the rotation speed, the separation time would reduce.

    摘要 I Extended Abstract III 致謝 XVIII 目錄 XIX 表目錄 XXV 圖目錄 XXVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與研究目的 1 第二章 文獻回顧 3 2.1 傳統油-水分離方法 3 2.1.1 傳統油-水分離方法-物理方法 4 2.1.2 傳統油-水分離方法-化學方法 7 2.1.3 傳統油-水分離方法-物理化學方法 8 2.1.4 傳統油-水分離方法-生物方法 9 2.2 超疏水表面理論 10 2.2.1 蓮花效應(Lotus effect) 10 2.2.2 超疏水表面之表徵 14 2.2.3 楊氏(Young)方程式 17 2.2.4 溫佐(Wenzel)方程式 18 2.2.5 卡西-巴斯特(Cassie and Baxter)方程式 19 2.2.6 介於溫佐和卡西-巴斯特兩狀態之間的過渡狀態 20 2.2.7 傾斜角與表面濕潤性質之關係 22 2.3 滑溜表面 23 2.4 超疏水/超親油表面製備 25 2.5 基於特殊濕潤性質之油-水分離應用 27 2.5.1超疏水/超親油表面應用於油水分離 29 2.5.2超親水/超疏油表面應用於油水分離 34 2.6 油水分離過程的機制探討 36 第三章 實驗內容 40 3.1 分離膜 40 3.2 實驗藥品 40 3.2.1 製備塗布材料 40 3.2.2 測試液體 40 3.3 儀器設備與裝置 41 3.3.1 Milli-Q超純水系統 41 3.3.2 箱型高溫爐 (Muffle furnace) 42 3.3.3 掃描式電子顯微鏡 (Scanning electron microscope) 43 3.3.4 接觸角分析儀 (Contact angle measure analyzer) 44 3.3.5均質機 (Homogenizier) 46 3.3.6 動態雷射光散儀 (Dynamic Light Scattering, DLS) 47 3.3.7桌上型精密濁度計 48 3.4 實驗方法 49 3.4.1 聚酯纖維紡織品的前置處理 49 3.4.2鐵氟龍分散液製備 50 3.4.3 以浸塗法(Dip-coating)塗佈聚酯纖維紡織品 50 3.4.4 製備油水乳化液 51 3.5 油水分離效能指標 51 第四章 結果與討論 52 4.1 製備疏水/超親油紡織品 53 4.1.1 聚酯纖維紡織品塗佈PTFE DISP (60 wt%)之濕潤性質及表面型態 53 4.1.2聚酯纖維紡織品塗佈PTFE DISP (40 wt%)之濕潤性質及表面型態 56 4.1.3聚酯纖維紡織品塗佈PTFE DISP (30 wt%)之濕潤性質及表面型態 59 4.1.4 聚酯纖維紡織品塗佈PTFE DISP 之潤濕性質比較 62 4.2 疏水/親油紡織品應用於水在油中乳化液分離 65 4.2.1 不含界面活性劑水在油中(1/99)乳化液的穩定性 65 4.2.2 不含界面活性劑水在油中(1/99)乳化液的油水分離 67 4.2.2.1 油水分離裝置 67 4.2.2.2 塗佈PTFE DISP的紡織品於水在油中乳化液分離結果 68 4.2.2.2 塗佈PTFE DISP的紡織品於水在油中乳化液分離效能 71 4.2.3 塗佈PTFE DISP的紡織品於水在油中乳化液分離過程中的機制與表面疏水機制的變化 74 4.2.3.1 疏水親油表面於油在水中乳化液分離過程中的疏水機制變化 75 4.2.3.2 疏水親油表面於分離大量水在油乳化液的分離 81 4.2.4 驗證疏水/親油分離膜分離水在油中乳液之機制 85 4.3疏水/親油紡織品應用於油在水中乳化液分離 87 4.3.1 不含界面活性劑油在水中(1/99)乳化液的穩定性 87 4.3.2 不含界面活性劑油在水中(1/99)乳化液的油水分離 89 4.3.2.1 塗佈PTFE DISP的紡織品於油在水中乳化液分離結果 89 4.3.2.2 影響油在水中乳化液分離之原因 92 4.3.2.3 增加油在水乳化液接觸到表面的機率後的油水分離結果 93 4.3.3 不同轉速下影響分離油在水中乳化液之結果 95 4.3.4 提升油比例含量的油在水中乳化液的分離結果 96 4.3.4.1 油在水中 (1/X) 乳化液製備 96 4.3.4.2 油含量不同對於油在水中乳化液分離結果 98 4.3.5 驗證疏水/親油分離膜分離油在水乳液之機制 102 第五章 結論與建議 104 5.1 結論 104 5.2 建議 107 第六章 參考文獻 108

    1. Y. X. Wu, and J. Y. Xu: Oil and water separation technology. Advances in Mechanics, 45 (2015).
    2. X. D. Chen, W. W. Hou, J. Chen, and J. Huang: Research on corrosion prevention tech-nology in heating coils of settling tank in Shanbei oil field. Corrosion Science and Protection Technology, 26, 191 (2014).
    3. X. F. Tan: Study on demulsification of crude oil emulsions via ultrasonic irradiation. Master Thesis, Tianjin University (2007).
    4. Q. Guo-Kun: Analysis on factors influencing crude oil demulsification effectiveness by ultrasonic wave. Petroleum Geology and Recovery Efficiency, 12, 76 (2005).
    5. G. Ye, X. Lu, P. Han, and X. Shen: Desalting and dewatering of crude oil in ultrasonic standing wave field. Journal of Petroleum Science and Engineering, 70, 140 (2010).
    6. B. P. Singh: Laboratory test results on ultrasound treated industrial emulsion. Acoustics Letters, 19, 78 (1995).
    7. B. E. P. Com, D. D. Rou, and X. G. Despau: Emulsion characterization by focused ultrasonic waves. Ultra-sonics, 39, 329 (2001).
    8. B. J. Sun, D. C. Yan, W. X. Qiao: The study of demulsification with ultrasonic irradiation on oil emulsion. Acta Acustica, 24, 327 (1999).
    9. W. Yang, and X. Y. Fu: Application of ultrasonic demulsificaion dehydration technology in Tahe Oilfield. Natural Gasand Oil, 32, 23 (2014).
    10. G. X. Ye, and P. F. Han: Application of ultrasonic on refinery crude oil dewatering and desalting. Acta Petrolei Sinica, 25, 119 (2009).
    11. W. S. Barnickel: Process for treating crude oil, US, 1093098 (1914).
    12. N. Xia: Experimental research of coarse graining technology in improving the efficiency of oil-water separation. Master Thesis, Northeast Petroleum University (2012).
    13. N. Nadarajah, A. Singh, and O. P. Ward: Evaluation of a mixed bacterial culture for de-emulsification of water-in-petroleum oil emulsions. World Journal of Microbiology and Biotechnology, 18, 435 (2002).
    14. W. Barthlott, and C. Neinhuis: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1 (1997)
    15. C. Neinhuis, and W. Barthlott: Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany, 79, 667 (1997).
    16. J. Zimmermann, S. Seeger, and F. A. Reifler: Water shedding angle: a new technique to evaluate the water repellent properties of superhydrophobic surfaces. Textile Research Journal, 79, 1565 (2009).
    17. Z. Chu, and S. Seeger: Superamphiphobic surfaces. Chemical Society Reviews, 43, 2784 (2014).
    18. S. Li, J. Huang, Z. Chen, G. Chen, and Y. Lai: A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A, 5, 31 (2017).
    19. R. N. Wenzel: Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28, 988 (1936)
    20. A. Cassie, and S. Baxter: Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546 (1944)
    21. X. Feng, and L. Jiang: Design and creation of superwetting/antiwetting surfaces. Advanced Materials, 18, 3063 (2006).
    22. E. Bormashenko, R. Grynyov, G. Chaniel, H. Taitelbaum, and Y. Bormashenko: Robust technique allowing manufacturing superoleophobic surfaces. Applied Surface Science, 270, 98 (2013).
    23. X. Liu, Y. Liang, F. Zhou, and W. Liu: Extreme wettability and tunable adhesion: biomimicking beyond nature. Soft Matter, 8, 2070 (2012).
    24. J. Bico, U. Thiele, and D. Quéré: Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206, 41 (2002).
    25. A. Tuteja, W. Choi, and M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen: Designing superoleophobic surfaces. Science, 318, 1618 (2007)
    26. T. S. Wong, S. H. Kang, S. K. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, J. Aizenberg: Bioinspired Self-Repairing Slippery Surfaces with Pressure-Stable Omniphobicity. Nature , 477, 443-447 (2011)
    27. D. Daniel, M. N. Mankin, R. A. Belisle, T. S. Wong, J. Aizenberg: Lubricant-Infused Micro/Nano-Structured Surfaces with Tunable Dynamic Omniphobicity at High Temperatures. Appl. Phys. Lett., 102, 231603 (2013)
    28. J. Y. Shiu, C. W. Kuo, P. Chen, C. Y. Mou: Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography. Chem. Mater., 16, 561-564 (2004).
    29. W. Zhang, N. Liu, Y. Cao, X. Lin, Y. Liu, and L. Feng: Superwetting Porous Materials for Wastewater Treatment: from Immiscible Oil/Water Mixture to Emulsion Separation. Adv. Mater. Interfaces, 1700029 (2017).
    30. G. Kwon, E. Post, and A. Tuteja: Membranes with selective wettability for the separation of oil–water mixtures. MRS communications, 5, 475 (2015).
    31. R. K. Gupta, G. J. Dunderdale, M. W. England, and A. Hozumi: Oil/water separation techniques: a review of recent progresses and future directions. J. Mater. Chem. A, 5, 16025 (2017)
    32. L. Feng, Z. Y. Zhang, Z. H. Mai, Y. M. Ma, B. Q. Liu, L. Jiang, and D.B. Zhu: A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew. Chem. Int. Ed., 116, 2046 (2004).
    33. J. Wu, J. Chen, K. Qasim, J. Xia, W. Lei, and B.P. Wang: A hierarchical mesh film with superhydrophobic and superoleophilic properties for oil and water separation. J. Chem. Technol. Biotechnol., 87, 427 (2012).
    34. A. Tuteja, W. Choi, M.L. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G. H. McKinley, and R.E. Cohen: Designing superoleophobic surfaces. Science, 318, 1618 (2007).
    35. Q. J. Wang, Z. Cui, Y. Mao, and Q.M. Chen: Stable highly hydrophobic and oleophilic meshes for oil–water separation. Appl. Surf. Sci., 253, 9054 (2007).
    36. Y. Z. Cao, X. Y. Zhang, L. Tao, K. Li, Z. X. Xue, L. Feng, and Y. Wei: Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Appl. Mater Interfaces, 5, 4438 (2013).
    37. S. T. Wang, Y. L. Song, and L. Jiang: Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids. Nanotechnology, 18, 015103 (2007).
    38. B. Wang and Z. G. Guo: Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing. Appl. Phys. Lett., 103, 063704 (2013).
    39. C. X. Wang, T. J. Yao, J. Wu, C. Ma, Z. X. Fan, Z. Y. Wang, Y. R. Cheng, Q. Lin, and B. Yang: Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation. ACS Appl. Mater. Interfaces, 1, 2613 (2009).
    40. Y. W. Shang, Y. Si, A. Raza, L. P. Yang, X. Mao, B. Ding, and J. Y. Yu: An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil–water separation. Nanoscale, 4, 7847 (2012).
    41. X. M. Tang, Y. Si, J. L. Ge, B. Ding, L. F. Liu, G. Zheng, W. J. Luo, and J. Y. Yu: In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil–water separation. Nanoscale, 5, 11657 (2013).
    42. M. L. Huang, Y. Si, X. M. Tang, Z. G. Zhu, B. Ding, L. F. Liu, G. Zheng, W. J. Luo, and J. Y. Yu: Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. J. Mater. Chem. A, 1, 14071 (2013).
    43. W. B. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin, and L. Jiang: Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv. Mater., 25, 2071 (2013).
    44. S. H. Wang, M. Li, and Q. H. Lu: Filter paper with selective absorption and separation of liquids that differ in surface tension. ACS Appl. Mater. Interfaces, 2, 677 (2010).
    45. C. Du, J. D. Wang, Z. F. Chen, and D. R. Chen: Durable superhydrophobic and superoleophilic filter paper for oil–water separation prepared by a colloidal deposition method. Appl. Surf. Sci., 313, 304 (2014).
    46. A. Asthana, T. Maitra, R. Buchel, M.K. Tiwari, and D. Poulikakos: Multifunctional superhydrophobic polymer/carbon nanocomposites: ACS Appl. Mater. Interfaces, 6, 8859 (2014).
    47. J. P. Zhang and S. Seeger: Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv. Funct. Mater., 21, 4699 (2011).
    48. J. Li, L. Shi, Y. Chen, Y. B. Zhang, Z. G. Guo, B. L. Su, and W. M. Liu: Stable superhydrophobic coatings from thiol-ligand nanocrystals and their application in oil/water separation. J. Mater. Chem., 22, 9774 (2012).
    49. Y. Cao, Y. Chen, N. Liu, X. Lin, L. Feng and Y. Wei: Mussel-inspired chemistry and Stober method for highly stabilized water-in-oil emulsions separation. J. Mater. Chem. A, 2, 20439–20443(2014)
    50. Y. Si, Q. Fu, X. Wang, J. Zhu, J. Yu, G. Sun, and B. Ding: Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS. Nano. Org, 9, 3791-3799(2015)
    51. X. Wang, C. Xiao, H. Liu, M. Chen, J. Haoac and Y. Wu: A study on fabrication of PVDF-HFP/PTFE blend membranes with controllable and bicontinuous structure for highly effective water-in-oil emulsion separation. RSC Adv., 8, 27754–27762(2018)
    52. X. Bai, Z. Zhao, H. Yang, J. Lia: ZnO nanoparticles coated mesh with switchable wettability for on-demand ultrafast separation of emulsified oil/water mixtures. Separation and Purification Technology, 221, 294–302(2019)
    53. Z. Shi , W. Zhang, F. Zhang, X. Liu, D. Wang, J. Jin, and L. Jiang Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films. Adv. Mater., 25, 2422–2427 (2013)
    54. S. Lei, Z. Shi, J. Ou, F. Wang, M. Xue, W. Li, G. Qiao, X. Guan, J. Zhang: Durable superhydrophobic cotton fabric for oil/water separation. Colloids and Surfaces A, 533, 249-254 (2017)
    55. Y. Pan, L. Liu, Z. Zhang, S. Huang, Z. Hao, X. Zhao: Surfaces with controllable super-wettability and applications for smart oilwater separation Chemical Engineering Journal, 378, 122178 (2019)
    56. J. Yang, Z. Z. Zhang, X. H. Xu, X. T. Zhu, X. H. Men, and X. Y. Zhou: Superhydrophilic-superoleophobic coatings. J. Mater. Chem., 22, 2834 (2012).
    57. J. Yang, H. J. Song, X. H. Yan, H. Tang, and C. S. Li: Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation. Cellulose, 21, 1851 (2014).
    58. X. Y. Zhu, H. E. Loo, and R. B. Bai: A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications. J. Membr. Sci., 436, 47 (2013)
    59. X. Y. Zhu, W. T. Tu, K. H. Wee, and R. B. Bai: Effective and low fouling oil/ water separation by a novel hollow fiber membrane with both hydrophilic and oleophobic surface properties. J. Membr. Sci., 466, 36 (2014)
    60. K. Li, X. Zeng, H. Li, X. Lai, H. Xie Facile fabrication of superhydrophobic filtration fabric with honeycomb structures for the separation of water and oil. Materials Letters, 120, 255–258 (2014)
    61. C. Cao, M. Ge, J. Huang, S. Li, S. Deng, S. Zhang, Z. Chen, K. Zhang, S. S. Al-Deyab and Y. Lai: Robust fluorine-free superhydrophobic PDMS–ormosil@fabrics for highly effective self-cleaning and efficient oil–water separation. J. Mater. Chem. A, 4, 12179 (2016)

    下載圖示 校內:2022-09-01公開
    校外:2022-09-01公開
    QR CODE