| 研究生: |
謝孟勳 Hsieh, Meng-Syun |
|---|---|
| 論文名稱: |
晶圓大尺度下的分子級電子元件製造 Wafer-scale fabrication of molecular devices |
| 指導教授: |
蘇彥勳
Su, Yen-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 晶圓大尺寸製造 、分子電晶體 、自組裝分子 、石墨烯 |
| 外文關鍵詞: | wafer-scale fabrication, molecular transistors, self assembled molecule, graphene |
| 相關次數: | 點閱:73 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯的機械和電性質可被用於分子元件的製造以及元件最小尺寸的縮減。數百個分子元件被自組裝的自動探針平台分析電性。該自動探針平台由經濟實惠的硬體和容易取得的軟體所構成,並且其運行是基於力量回饋系統。並且,自動化測量可提供省時、提高元件壽命、以及大量元件分析等優點。這些優點被後續的石墨烯電晶體的電性分析映證。
在利用自動偵探針平台分析分子元件後,發現分子元件的電性足以滿足數位電子的電性需求。我們的分子元件以電洞的載子導電,並且其開關電流比例高達103、導電機制為Schottky-Richardon。然而分子元件的良率並不理想(數百個元件中,四個成功),因為在元件內的分子層有缺陷。這些被Cyclic Voltammetry 證實的缺陷包含孔洞、分子域邊界、階梯、槽,並會造成元件的漏電、低良率。
Mechanical and electrical property of graphene is exploited to fabricate molecular devices as well as to scale down device minimum feature size. Hundreds of molecular devices has been characterized by a self-build automatic prober. The setup of automatic prober includes inexpensive hardware and easily accessible software, enabling automatic electrical measurement by force-feedback. Furthermore, the automatic operation, instead of hand-on manipulation, has benefited us from merits, including saving time, improving lifetime of devices and mass data analysis, which is validated by electrical measurement of graphene transistor.
Electrical property of molecular devices is found to reach the requirement of digital electronic after applying automatic prober to electrical measurement. Our devices which conduct through hole carriers demonstrate on/off ratio over 103 and Schottky-Richardson conduction mechanism. However, devices yield, 4 out of hundreds, suffers because of the defects in molecule layers. These defects— including pinholes, domain boundaries, steps and grooves—which were confirmed by cyclic voltammetry contribute to device leakage that leads to poor yield rate.
1. Frank, D. J. et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–287 (2001).
2. Cui, Y. &Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–3 (2001).
3. Tans, S. J., Verschueren, A. R. M. &Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nat. 393, 49–52 (1998).
4. Bachtold, A., Hadley, P., Nakanishi, T. &Dekker, C. Logic Circuits with Carbon Nanotube Transistors. Science (80-. ). 294, (2001).
5. Smits, E. C. P. et al. Bottom-up organic integrated circuits. Nature 455, 956–959 (2008).
6. Whang, D., Jin, S., Wu, Y. &Lieber, C. M. Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems. doi:10.1021/nl0345062
7. Huang, Y., Duan, X., Wei, Q. &Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).
8. Javey, A., Nam, S., Friedman, R. S., Yan, H. &Lieber, C. M. Layer-by-Layer Assembly of Nanowires for Three-Dimensional, Multifunctional Electronics. doi:10.1021/nl063056l
9. Liu, Y., Chung, J.-H., Liu, K. &Ruoff, R. S. Dielectrophoretic Assembly of Nanowires. doi:10.1021/jp061367e
10. Packing and Molecular Orientation of Alkanethiol Monolayers on Gold Surfaces. Langmuir (1989).
11. Spontaneously Organized Molecular Assemblies. 4. Structural Characterization of n-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, Infrared Spectroscopy, and Electrochemistry. J. Am. Chem. SOC (1987).
12. Sun, L. et al. Single-molecule electronics: from chemical design to functional devices. Chem. Soc. Rev. 43, 7378–7411 (2014).
13. Jiwoong Park*†‡, Abhay N. Pasupathy*‡, Jonas I. Goldsmith§, Connie Chang*, Yuval Yaish*, Jason R. Petta*, Marie Rinkoski*, James P. Sethna*, He´ctor D. Abrun˜a§, P. L. M. C. R. Coulombblockadeand theKondo effect in single-atom transistors. Nature 417, (2002).
14. Kobayashi, S. et al. Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nat. Mater. 3, 317–322 (2004).
15. Halik, M. et al. Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature 431, 963–966 (2004).
16. Wu, S. W., Ogawa, N., Nazin, G.V &Ho, W. Conductance Hysteresis and Switching in a Single-Molecule Junction. doi:10.1021/jp7114548
17. Aviram, A. &Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).
18. Tulevski, G. S. et al. Attaching organic semiconductors to gate oxides: In situ assembly of monolayer field effect transistors. J. Am. Chem. Soc. 126, 15048–15050 (2004).
19. Bert de Boer, †,§ et al. Metallic Contact Formation for Molecular Electronics: Interactions between Vapor-Deposited Metals and Self-Assembled Monolayers of Conjugated Mono- and Dithiols. (2004). doi:10.1021/LA0356349
20. Hansen, C. R. et al. Structure of the Buried Metal−Molecule Interface in Organic Thin Film Devices. Nano Lett. 9, 1052–1057 (2009).
21. Hill, I. G., Rajagopal, A., Kahn, A. &Hu, Y. Molecular level alignment at organic semiconductor-metal interfaces. Appl. Phys. Lett. 73, 662–664 (1998).
22. Liu, Z., Kobayashi, M., Paul, B. C., Bao, Z. &Nishi, Y. Fermi level depinning at metal-organic semiconductor interface for low-resistance ohmic contacts. in Technical Digest - International Electron Devices Meeting, IEDM (2009). doi:10.1109/IEDM.2009.5424344
23. Bumm, L. A. et al. Are Single Molecular Wires Conducting? Science (80-. ). 271, 1705–1707 (1996).
24. Slowinski, K., Fong, H. K. Y. &Majda, M. Mercury-mercury tunneling junctions. 1. Electron tunneling across symmetric and asymmetric alkanethiolate bilayers. J. Am. Chem. Soc. 121, 7257–7261 (1999).
25. Vilan, A. &Cahen, D. Soft Contact Deposition onto Molecularly Modified GaAs. Thin Metal Film Flotation: Principles and Electrical Effects. Adv. Funct. Mater. 12, 795–807 (2002).
26. Li, T. et al. Solution-processed ultrathin chemically derived graphene films as soft top contacts for solid-state molecular electronic junctions. Adv. Mater. 24, 1333–1339 (2012).
27. Raimond, J. M. et al. Electric Field Effect in Atomically Thin Carbon Films. Science (80-. ). 20–23 doi:10.1126/science.1102896
28. Yu, Y.-J. et al. Tuning the graphene work function by electric field effect. Nano Lett. 9, 3430–4 (2009).
29. Xu, Y. et al. Inducing Electronic Changes in Graphene through Silicon (100) Substrate Modification. Nano Lett. 11, 2735–2742 (2011).
30. Ojeda-Aristizabal, C., Bao, W. &Fuhrer, M. S. Thin-film barristor: A gate-tunable vertical graphene-pentacene device. Phys. Rev. B - Condens. Matter Mater. Phys. 88, 3–6 (2013).
31. Barrier, S. et al. Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier.
32. Britnell, L. et al. Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science (80-. ). 335, 947–950 (2012).
33. Liu, Y. et al. High-Performance Organic Vertical Thin Film Transistor Using Graphene as a Tunable Contact. ACS Nano 9, 11102–11108 (2015).
34. Li, X. et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science (80-. ). 324, 1312–1314 (2009).
35. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. &Whitesides, G. M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. doi:10.1021/cr0300789
36. Nezich, D., Reina, A. &Kong, J. Electrical characterization of graphene synthesized by chemical vapor deposition using Ni substrate. Nanotechnology 23, 15701 (2012).
37. Pirkle, A. et al. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 99, 2–5 (2011).
38. Lin, Y. C. et al. Clean transfer of graphene for isolation and suspension. ACS Nano 5, 2362–2368 (2011).
39. Pisana, S. et al. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007).
40. Sarker, B. K. &Khondaker, S. I. Thermionic emission and tunneling at carbon nanotube-organic semiconductor interface. ACS Nano 6, 4993–4999 (2012).
41. Poirier, G. E. Characterization of Organosulfur Molecular Monolayers on Au(111) using Scanning Tunneling Microscopy. Chem. Rev. 97, 1117–1128 (1997).
42. Schwartz, D. K. D. D. K. D. D. K. Mechanisms and kinetics of self-assembled monolayer formation. Annu. Rev. Phys. Chem. 52, 107–137 (2001).
43. Yuan, L., Jiang, L., Thompson, D. &Nijhuis, C. a. On the Remarkable Role of Surface Topography of the Bottom-Electrodes in Blocking Leakage Currents in Molecular Diodes. J. Am. Chem. Soc. 1–4 (2014). doi:10.1021/ja5007417
44. Mabbott, G. A. An introduction to cyclic voltammetry. J. Chem. Educ. 60, 697 (1983).
45. Blackstock, J. J., Li, Z., Freeman, M. R. &Stewart, D. R. Ultra-flat platinum surfaces from template-stripping of sputter deposited films. Surf. Sci. 546, 87–96 (2003).
46. Xue, Y., Li, X., Li, H. &Zhang, W. Quantifying thiol-gold interactions towards the efficient strength control. Nat. Commun. 5, 4348 (2014)
校內:2021-01-01公開