| 研究生: |
蔡清心 Tsai, Ching-Hsiu |
|---|---|
| 論文名稱: |
具有突出部射極與組合式射極結構之異質接面雙極性電晶體之研製 Fabrication of Heterojuntion Bipolar Transistors (HBTs) with Emitter Ledge and Composite-Emitter Structures |
| 指導教授: |
劉文超
Liu, Wen-Chan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 組合式射極 、突出部射極 |
| 外文關鍵詞: | emitter ledge, CEHBT |
| 相關次數: | 點閱:71 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
異質接面雙極性電晶體,由於具有高速操作及高電流驅動能力,近幾年來已被廣泛的應用在數位及微波積體電路上。本論文將研究具有突出部射極結構之磷化銦鎵/砷化鎵異質接面雙極性電晶體,包含在元件特性量測分析及其應用於微波頻率上的特性。此外,基於突出部射極結構的使用,由實驗結果可看出元件的表面復合速度及態位密度明顯降低,且此元件可操作在較低的集極電流區,因而可提供使用者在低功率電子電路上的應用。而且,具有突出部射極結構的元件也表現出較佳的高頻表現特性。
另一方面,一種新穎之磷化銦鎵/砷化鋁鎵/砷化鎵的組合式射極異質接面雙極性電晶體,其元件特性將在第三章中予以研究及討論。有著線性漸變分佈的砷化鋁鎵層組合式射極異質接面雙極性電體,由於其射極到基極間能隙以漸變式減小,且適當的選取鋁的莫耳分率(x=0.11)可使元件呈現出幾乎連續性的導電帶結構。實驗結果顯示組合式射極異質接面雙極性電晶體具有良好的直流與高頻特性,像較低的集極-射極補償電壓,極低的集極電流範圍和一個較寬廣的集極電流操作區域。
第 一 章
導 論
近年來,隨著磊晶技術不斷進步,帶動了三五族化合物半導體產業的發展。而異質接面雙極性電晶體因具有極佳的微波特性及高電流驅動能力,因此,已被廣泛應用在高頻和高功率元件與電路上,例如無線通訊和功率放大器等。除此之外,異質接面雙極性電晶體的價電帶不連續特性及大能隙射極層的使用,使得異質接面雙極性電晶體之基極層摻雜濃度可大幅被提升進而降低基極層電阻值,元件亦具有高線性度及較佳的直流輸出特性,而基-射極的導通電壓也較容易控制。
在第一章中,吾人先對於異質接面雙極性電晶體作一番介紹,且對所使用的材料做一番描述,並與同質接面雙極性電晶體做比較。
對三五族材料系統而言,囿於材料具較高之表面態位密度及較多之表面複合中心,造成少數載子類型之元件特性劣化及可靠性衰減。有鑑於異質接面雙極性電晶體表面複合電流所產生之不良影響,在第二章中,吾人研製一種具有突出部射極結構之異質接面雙極性電晶體,以圖改善元件之相關特性。由實驗結果得知,具突出部射極結構之元件除可在極低之集極電流區下操作,該元件亦具有較低之漏電流及較佳之高頻表現。
對於異質接面雙極性電晶體而言,由於射-基接面之導電帶不連續值(DEC)的存在使得元件特性受其影響而不盡理想,雖現階段常用之磷化銦鎵/砷化鎵材料系統比起砷化鎵/砷化鋁鎵材料系統而言,其具一較小之導電帶不連續值,然此導電帶不連續值及其衍生之缺點依舊影響元件之操作。在第三章中,吾人研製一新穎之組合式射極異質接面雙極性電晶體,並於此章中就元件之直流特性做一完整之研究與探討。最後,我們再對本論文做一個結論,及未來發展性做一個完整適當規劃。
第 二 章
具有突出部射極結構之磷化銦鎵/砷化鎵之異質接面雙載子電晶體
由於異質接面雙極性電晶體具有高密度之表面態位密度及大的表面複合電流,因此,在元件製造的過程中,表面氧化層所產生之缺陷嚴重地降低元件之特性及可靠度。在本章中,吾人將研製具射極突出部結構之磷化銦鎵/砷化鎵異質接面雙極性電晶體,並研究其直流特性及高頻特性;藉由此製程技術,可以減少元件的表面的複合速度及表面態位密度,且在實驗結果發現,相較於一般傳統元件,具射極突出部結構的元件可以操作在低於0.3nA集極電流,並且有比較寬廣的電流操作區域。在高頻特性表現方面,具有突出部射極結構元件具較佳的單一電流增益截止頻率(fT)及最大振盪頻率(fmax)分別為40GHZ及30.6GHZ。
另一方面,我們也比較具有突出部射極結構與一般傳統之元件在常溫及變溫下的兩端、和三端直流特性,包括導通電壓、電流增益和理想因子及高頻表現。從射極周長面積比和電流增益倒數的關係中,由於表面複合電流的減小,我們可以發現具突出部射極結構的元件有較輕微的射極尺寸效應。
第 三 章
磷 化 銦 鎵/砷 化 鋁 鎵/砷 化 鎵 之 研 究 組 合 式 射 極 異 質 接 面 雙 極 性 電 晶 體
於本章中,吾人將研製一種新穎以磷化銦鎵/砷化鋁鎵/砷化鎵為組合式射極結構之異質接面雙極性電晶體,當鋁的莫耳分率為0.11時,磷化銦鎵和砷化鋁鎵可以達到晶格匹配之條件,所以我們可以發現射極和基極接面間的導電帶差趨近於零。
實驗上,由於能障趨近於零,我們可以發現此元件展現相當不錯的直流增益、較低的電壓補償和較小的射極-基極導通電壓。而且從集極電流理想因子趨近於1,更可以證明射極和基極接面能隙差幾乎被削減。此外,此元件可以操作在極低的集極電流區域和寬廣的電流操作區域,所以此元件可以應用於低電壓和低功率系統上。
第 四 章
結 論 與 未 來 展 望
於本論文中,吾人研製以砷化鎵材料系統為基礎之改良型異質接面及組合式射極雙極性電晶體。其中包括磷化銦鎵/砷化鎵具突出部射極結構異質接面雙極性電晶體與一具有組合式射極層之砷化鋁鎵/磷化銦鎵/砷化鎵異質接面雙極性電晶體。組合式射極層之砷化鋁鎵/磷化銦鎵/砷化鎵異質接面雙極性電晶體,組合式射極層之使用旨在射-基接面形成一連續之導電帶,藉以強化元件特性。此外,吾人對傳統之磷化銦鎵/砷化鎵異質接面雙極性電晶體設計一種具突出部射極結構以圖改善其直流及高頻之特性表現。
我們雖對元件製程已有了初步的成果,但仍有一些需改進及加強的部分,就目前所做之成果,吾人將提出數種改善元件的方法,其中包括:
1. 設計新的光罩以縮小元件的面積,冀能減小元件的寄生電阻及電容,使得元件在高頻表現更完善。
2. 研發空橋式製程技術,可有效的減低鈍化層之影響(鈍化層品質不佳之因素,可經由空橋的使用完全的排除),有效的強化元件高頻特性,提高其高頻效能。
3. 由先前的實驗結果發現,鈍化層的品質會嚴重影響高頻的表現,所以在縮小面積的同時,研製一種優良的鈍化層並縮小鈍化層的面積,以期在高頻有更好的表現。
4. 設計指叉狀結構,以減小射極擁擠效應,進而增加元件的功率表現,以提高fT與fmax值。
5. 在具有穿透式射極障壁之異質接面雙極性電晶體結構加上組合式基極漸變層或基極濃度漸變層,以改進元件高頻和直流特性。
6. 完成MMIC’s電路設計,將所研製之元件實際應用於電路上。
Recently, due to the excellent current driving capability and microwave performances, Heterojunction bipolar transistors (HBTs) have extensively employed on digital and analogy applications. In this thesis, the theoretical analyses and experimental results of InGaP/GaAs HBTs with emitter ledge structure are systematically studied and demonstrated. Based on the use of emitter ledge passivation, the surface recombination velocity and surface state are effectively reduced. The device with ledge passivation can be operated under extremely low collector current region, which offers the promise for low-power electronics applications. Furthermore, the studied devices with ledge passivation show superior microwave performance.
In addition, the DC characteristics of a novel InGaP/AlxGa1-xAs/GaAs composite emitter heterojunction bipolar transistor (CEHBT) is fabricated and studied in chapter 3. The CEHBT with a linear-graded AlxGa1-xAs layer exhibits a nearly continuous conduction band structure and the absence potential spike at emitter-base junction. Experimental results show that the CEHBT presents good DC and microwave performances, such as a lower collector-emitter offset voltage, an extremely low collector current level and a wide collector current operating regime.
References
[1] P. M. Asbeck, M. F. Chang, K. C. Wang, D. L. Miller, G. J. Sullivan, N. H. Sheng, E. A. Sovero, and J. A. Higgins, “Heterojunction bipolar transistors for microwave and millimeter-wave integrated circuits,” IEEE Trans. Electron Devices, vol. 34, pp. 2571 -2579, 1987.
[2] M. E. Kim, A. K. Oki, G.M. Gorman, D. K. Umemoto, and J. B. Camou, “GaAs heterojunction bipolar transistor device-And IC technology for high-performance analog and microwave applications,” IEEE Trans. on Microwave Theory and Techniques, vol. 37, pp. 1286 -1303, 1989.
[3] F. Ren, C. R. Abernathy, S. J. Pearton, J. R. Lothian, P. W. Wisk, T. R. Fullowan, Y. K. Chen, L. W. Yang, S. T. Fu, R. S. Brozovich, and H. H. Lin, “Self-aligned InGaP/GaAs heterojunction bipolar transistors for microwave power application,” IEEE Electron Device Lett. vol. 14, pp. 332 –334, 1993.
[4] W. Liu, S. K. Fan, T. Henderson, and D. Davito, “Microwave performance of a self-aligned GaInP/GaAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 14, pp. 176-178, 1993.
[5] D. Mensa, Q. Lee, J. Guthrie, S. Jaganathan and M. J. W. Rodwell, “Transfer-substrate HBTs with 254GHz fT,” IEE Electron. Lett., vol. 35, pp.605-606, 1999.
[6] Q. Lee, S. C. Martin, D. Mensa, R. P. Smith, J. Guthrie, and M. J. W. Rodwell, “Submicron transferred-substrate heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 20, pp. 396-398, 1999.
[7] W. Schockley, "Circuit elements utilizing semiconductive material," U. S. Patent, N. 2569, p. 347, 1951.
[8] H. Kroemer, "Heterostructure bipolar transistors and integrated circuits," IEEE Proc. vol. 70, p.13, 1982.
[9] S. Brodjo, T. J. Riley, and G. T. Wright, “The heterojunction transistor and the space charge limited triode,” B.J. Appl. Phys. vol. 16, p.133, 1965.
[10] W. P. Dumke, J. M. Woodall, and V. L. Rideout, “GaAs-AlGaAs heterojunction transistor for high frequency operation,” Solid-State Electron. vol. 15, p.12, 1972.
[11] M. J. Mondry and H. Kroemer, "Heterostructure bipolar transistor using a (Ga,InP) emitter on a GaAs base, grown by molecular beam epitaxy,” IEEE Electron Device Lett. vol. EDL-6, p.175, 1985.
[12] S. L. Delage, M. A. di Forte-Poisson, H. Blanck, C. Brylinski, E. Chartier, E. Chartier, and P. Collot, “First microwave characterization of LP-MOCVD grown GaInP/GaAs self-aligned HBT,” Electron. Lett. vol. 27, p.253, 1991.
[13] U. Eriksson, P. Evaldsson, and K. Streubel, “Fabrication of a 1.55 VCSEL and an InGaAsP-InP HBT from a common epitaxial structure,” IEEE Photon. Technol. Lett., vol. 11, p. 403, 1999.
[14] M. J. Mondry and H. Kroemer, “Heterojunction bipolar transistor using a (Ga,In)P emitter on a GaAsbase, grown by molecular beam epitaxy,” IEEE Electron Device Lett., vol. 6, pp. 175-177, 1985.
[15] W. Liu and S. K. Fan, “Near-ideal I-V characteristics of GaInP/GaAs heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 13, pp. 510-512, 1992.
[16] Y. F. Yang, C. C. Hsu, E. S. Yang, and Y. K. Chen, “Comparison of GaInP/GaAs heterojunction emitter bipolar transistors and heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 42, pp. 1210-1215, 1995.
[17] T. Chung, S. Bank, and K. C. Hsieh, “High DC current gain InGaP/GaAs HBTs grown by Lp-MOCVD,” IEE Electron. Lett., vol. 36, pp.1885-1886, 2000.
[18] S. S. Lu and C. C. Huang, “High-current-gain Ga0.51In0.49P/GaAs GaInP/GaAs heterojunction bipolar transistor grown by gas-source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 13, pp. 214-216, 1992.
[19] M. A. Rao, E. J. Caine, H. Kroemer, S. I. Long, D. I.Babicc,”Determination of valence and conduction-band discontinuities at the (Ga,In)P/GaAs heterojunction by C-V profiling,” J. Appl. Phys., vol. 61, pp. 643-649, 1987.
[20] H. R. Chen, C. Y. Chang, C. P. Lee, C. H. Huang, J. S. Tsang, and K. L. Tsai, “High current gain, low offset voltage heterostructure emitter bipolar transistors”, IEEE Electron Device Lett., vol.15, pp. 336-338, 1994.
[21] M. M. Jahan and A. F. M. Anwar, “Junction temperature dependence of high-frequency noise in heterojunction bipolar transistors,” IEEE Electron Device Lett., vol.16, pp. 551-553, 1995
[22] M. M. Jahan and A. F. M. Anwar, “Early voltage in double heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol.42, pp. 2028-2029, 1995.
[23] W. S. Lour, “High-gain, low offset voltage, and zero potential spike by InGaP/GaAs δ-doped single heterojunction bipolar transistor (δ-SHBT),” IEEE Trans. Electron Devices, vol.44, pp. 346-348, 1997.
[24] C. Y. Chen, S. Y. Cheng, W. H. Chiou, H. M. Chuang, R. C. Liu, C. H. Yen, J. Y. Chen, C. C. Cheng, and W. C. Liu, “DC characterization of an InP-InGaAs tunneling emitter bipolar transistor (TEBT),” IEEE Trans. Electron Devices, vol. 50, pp. 874-879, 2003.
[25] S. Y. Cheng, J. Y. Chen, C. Y. Chen, H. M. Chuang, C. H. Yen, K. M. Lee and W. C. Liu “Comprehensive study of InGaP/ AlXGa1-XAs /GaAs heterojunction bipolar transistors (HBTs) with different doping concentrations of AlXGa1-XAs graded layers”, Semicond. Sci. Technol., Vol.19, pp.351-358, 2004.
[26] B. J. Skromme, C. J. Sandroff, E. Tablonovitch, and T. Gmitter, “Effects of passivation ionic films on the photoluminescence properties of GaAs,” Appl. Phys. Lett., vol. 51, pp. 2022-2024, 1987.
[27] C. J. Sandroff, M. S. Hegde, L. A. Farrow, C. C. Chang, and J. P. Harbison, “Electronic passivation of GaAs surfaces through the formation of arsenic-sulfur bonds,” Appl. Phys. Lett., vol. 54, pp. 362-364, 1989.
[28] R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframoboise, P. J. Poole, and S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett., vol. 73, pp. 665-667, 1998.
[29] E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett., vol. 60, pp. 371-373, 1992.
[30] W. Liu and J. S. Harris, Jr., “Effects of emitter-base contact spacing on the current gain in heterojunction bipolar transistors,” Jap. J. Appl. Phys., vol. 31, pp. 2349-2351, 1992.
[31] C. E. Huang, C. P. Lee, H. C. Liang, and R. T. Huang, “Critical spacing between emitter and base in InGaP heterojunction bipolar transistors (HBTs),” IEEE Electron Device Lett., vol. 23, pp. 576-578, 2002.
[32] R. J. Nelson, J. S. Williams, H. J. Leamy, B. Miller, H.C. Casey, Jr., B. A. Parkinson, A. Heller, “Reduction of GaAs surface recombination velocity by chemical treatment,” App.l Phys. Lett., vol. 36, pp. 76-79, 1980.
[33] R. Lyer, R. R. Chang, D. L. Lile, “Sulfur as a surface passivation for InP,” Appl. Phys. Lett., vol. 53, pp. 134-136, 1988.
[34] H. L. Chuang, M. S. Carpenter, M. R. Melloch, M. S. Lundstrom, E. Yablonovitch, T. J. Gmitter, “Surface passivation effects of As2S3 glass on self-aligned AlGaAs/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 57, pp. 2113-2115, 1990.
[35] Z. S. Li, W. Z. Cai, R. Z. Su, G. S. Dong, D. M. Huang, X. M. Ding, X. Y. Hou, X. Wang, “S2Cl2 treatment: A new sulfur passivation method of GaAs surface,” Appl. Phys. Lett., vol. 64, pp. 3425-3427, 1994.
[36] E. Yoon, R. A. Gottscho, V. M. Donnelly, H. S. Luftman, “GaAs surface modification by room-temperature hydrogen plasma passivation,” Appl. Phys. Lett., vol. 60, pp. 2681-2683, 1992.
[37] W. Liu, “Extrinsic base surface recombination current in GaInP/GaAs heterojunction bipolar transistors with near-unity ideality factor,” Jap. J. Appl. Phys., vol. 32, pp. 713-715, 1993.
[38] W. Liu, E. beam, T. Henderson, and S. K. Fan, “Extrinsic base surface recombination current in GaInP/GaAs heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 14, pp. 301-303, 1993.
[39] W. Liu, E.Beam, T. Henderson, and S. –K Fan, “Extrinsic base surface passivation in GaInP/GaAs heterojunction bipolar transistors.” IEEE Electron Device Lett. 14,301 (1993).
[40] C.Dai, W Liu, A. Massengle, A Kameyama, and J.S. Harris, Jr., “Novel processing approach for sub-micron heterojunction bipolar transistors.” 52nd Device Research Conference, Boulder, CO (1994).
[41] H.-H. Lin and S.-C.Lee,”super-gain AlGaAs/GaAs/GaAs heterojunction bipolar transistors using an emitter edge-thinning design.” Appl.Phys.Lett.47,839(1985).
[42] N. Hayama and K. Honjo, “Emitter size effect on current gain in fully self-aligned AlGaAs/GaAs HBTs with AlGaAs surface passivation layer.” IEEE Electron Decvice Lett. 11,388(1990).
[43] C.S .Kyono, S.C. Binari, and K. Ikossi-Anastasiou, “Gain enhancement in InAlAs/InGaAs heterojunction bipolar transistors using an emitter ledge.”J. Appl. Phys. 76, 1954(1994).
[44] D. Costa, M.N. Tutt, A. Khatibzadeh, and D. Pavlidis, “Tradeoff between 1/f noise and microwave performance in AlGaAs heterojunction bipolar transistors” IEEE Trans. Electron Devices 41, 1347 (1994).
[45] M.T. Fresina, PH.D.thesis, University of Illionis(1996).
[46] W. C. Liu, C. H. Lin, C. Y. Sun and W. S. Lour, “S-shaped negative differential resistance in a single GaAs quantum-well switching device,” Jpn. J. Appl. Phys., vol. 29, no. 8, pp. L1385-1387, 1990
[47] H. R. Chen, C. Y. Chang, C. P. Lee, C. H. Huang, J. S. Tsang, and K. L. Tsai, “High current gain, low offset voltage heterostructure emitter bipolar transistors”, IEEE Electron Device Lett., vol.15, pp. 336-338, 1994.
[48] M. M. Jahan and A. F. M. Anwar, “Junction temperature dependence of high-frequency noise in heterojunction bipolar transistors,” IEEE Electron Device Lett., vol.16, pp. 551-553, 1995.
[49] S. Y. Cheng, J. Y. Chen, C. Y. Chen, H. M. Chuang, C. H. Yen, K. M. Lee and W. C. Liu “Comprehensive study of InGaP/ AlXGa1-XAs /GaAs heterojunction bipolar transistors (HBTs) with different doping concentrations of AlXGa1-XAs graded layers”, Semicond. Sci. Technol., vol.19, pp.351-358, 2004.
[50] C. Y. Chen, S. I. Fu, S. Y. Cheng, C. Y. Chang, C. H. Tsai, C. H. Yen, S. F. Tsai, R. C. Liu, and W. C. Liu, “Influences of surface sulfur treatments on the temperature-dependent characteristics of HBTs,” IEEE Trans. Electron Devices, vol. 51, pp. 1963-1971, 2004.
[51] C. H. Henry, R. A. Logan, and F. R. Merritt, “The effect of surface recombination on current in AlxGa1-xAs heterojunction”, J. Appl. Phys., vol. 49, pp. 3530-3542, 1978.
[52] S. Tiwari, D. J. Frank, and S. L. Wright, “Surface recombination in GaAlAs/GaAs heterostructure bipolar transistors”, J. Appl. Phys., vol. 64, pp. 5009-5012, 1988.
[53] Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface recombination current in InGaP/GaAs heterojunction-emitter bipolar transistors”, IEEE Trans. Electron Devices, vol. 41, pp. 643-647, 1994
[54] K. Ikossi-Anastasiou, A. Ezis, K. R. Evans, and C. E. Stutz, “Low-temperature characterization of high-current-gain graded-emitter AlGaAs/GaAs narrow-base heterojunction bipolar transistor”, IEEE Electron Device Lett., vol. 13, pp. 414-417, 1992.
[55] H. Wang, K. W. Chang, L. T. Tran, J. C. Cowles, T. R. Block, E.W. Lin, G.S. Dow, A. K. Oki, D. C. Streit, B. R Allen, “Low phase noise millimeter wave frequency sources using InP-based HBT MMIC technology,” IEEE J. Solid State Circuits, vol. 31, pp. 1419, 1996.
[56] P. Freeman, Z. Xiangkun, I. Vurgaftman, J. Singh, and P. Bhattacharya, “Optical control of 14GHz MMIC oscillators based on InAlAs/InGaAs HBTs with monolithically integrated optical waveguides,” IEEE Trans. Electron Devices, vol. 43, pp. 373, 1996
[57] W. C. Liu and W. S. Lour, “Influence of the potential spike on heterostructure-emitter bipolar transistor,” J. Appl. Phys., vol. 69, no. 2, pp. 1063-1066, 1991.
[58] W. C. Liu and W. S. Lour, “Applications of transition-emitter superlattice to biploar transistor,” Jpn. J. Appl. Phys., vol. 30, no. 4A, pp. L561-563, 1991.
[59] W. C. Liu and W. S. Lour, “A new functional, resonant-tunneling bipolar transistor with a superlattice emitter,” J. Appl. Phys., vol. 70, no. 1, pp. 485-489, 1991.
[60] W. C. Liu, Y. S. Lee, and D. F. Guo, “A new resonant-tunneling bipolar transistor with triple-well emitter structure,” Solid-State Electron., vol. 34, no. 12, pp. 1457-1459, 1991.
[61] C. Y. Chen, W. C. Wang, W. H. Chiou, C. K. Wang, H. M. Chuang, S. Y Cheng, and W. C. Liu, “A comparative study of GaAs- and InP-based superlattice emitter resonant tunneling bipolar transistors (SE-RTBT's),” Solid-State Electron., vol. 46, no. 9, pp. 1289-1294, 2002.
[62] C. Y. Chen, W. H. Chiou, C. H. Yen, H. M. Chuang, J. Y. Chen, C. C. Cheng, and W. C. Liu, “Study on dc characteristics of an interesting InP/InGaAs tunneling-emitter bipolar transistor with double heterostructures,” J. Vac. Sci. & Technol., vol. 21, pp. 82-86, 2003.
[63] H. M. Chuang, C. K. Wang, K. W. Lin, W. H. Chiou, C. Y. Chen, and W. C. Liu, “Comparative study on DC characteristics of In0.49Ga0.51P-channel heterostructure field-effect transistors with different gate metals,” Semicond. Sci. Technol., vol. 18, pp. 319-324, 2003.
[64] W. C. Liu, C. H. Lin, C. Y. Sun and W. S. Lour, “S-shaped negative differential resistance in a single GaAs quantum-well switching device,” Jpn. J. Appl. Phys., vol. 29, no. 8, pp. L1385-1387, 1990.
[65] W. C. Liu, C. H. Lin, Y. S. Lee, and D. F. Guo, “GaAs quantum well negative differential resistance device prepared by molecular beam epitaxy,” J. Vac. Sci. & Technol., vol. B9, no. 2, pp. 243-248, 1991.
[66] W. C. Liu and W. S. Lour, “Temperature-dependence of double negative differential resistance of superlattice-emitter transistor,” Solid-State Electron., vol. 34, no. 8, pp. 921-924, 1991.
[67] W. C. Liu, C. Y. Sun, W. S. Lour, and D. F. Guo, “Application of sawtooth doping superlattice for negative-differential-resistance devices fabrication,” J. Vac. Sci. & Technol., vol. B10, no. 1, pp. 60-66, 1992.
[68] W. C. Liu, J. H. Tsai, L. W. Laih, C. Z. Wu, K. B. Thei, W. S. Lour, and D. F. Guo, “Heterostructure confinement effect on the negative-differential-resistance (NDR) bipolar transistor,” Superlattices and Microstructures, vol. 17, no. 4, pp. 445-456, 1995.
[69] W. C. Liu, J. H. Tasi, W. S. Lour, L. W. Laih, K. B. Thei, and C. Z. Wu, “Multiple negative-differential-resistance (NDR) of InGaP/GaAs heterostructure-emitter bipolar trasistor (HEBT),” IEEE Electron Device Lett., vol. 17, no. 3, pp. 130-132, 1996.
[70] K. S. Kim, Y. H. Cho, and B. D. Choe, “Determination of Al mole fraction for null conduction band offset in In0.5Ga0.5P/AlXGa1-XAs heterojunction by photoluminescence measurement,” Appl. Phys. Lett. vol. 67, No. 12, pp. 1718-1720, 1995.
[71] Y. F. Yang, C. C. Hsu, E. S. Yang, and Y. K. Chen, “Comparison of GaInP/GaAs heterostructure-emitter bipolar transistors and heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 42, pp. 1210-1215, 1995.
[72] H. Kroemer, “Heterostructure bipolar transistors and intrgrated circuits,” Proc. IEEE, vol. 70, pp. 13, 1982
[73] B. J. Skromme, C. J. Sandroff, E. Tablonovitch, and T. Gmitter, “Effects of passivation ionic films on the photoluminescence properties of GaAs,” Appl. Phys. Lett., vol. 51, pp. 2022-2024, 1987.
[74] E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett., vol. 60, pp. 371-373, 1992.
[75] Y. Takanashi and H. Fukano, “Low-frequency noise of InP/InGaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 45, pp. 2400-24706, 1998.
[76] L. Geelhaar and R. A. Bartynski, “Photoluminescence and x-ray photoelectron spectroscopy study of S-passivated InGaAs(001),” J. Appl. Phys., vol. 80, pp. 3076-3082, 1996.
[77] W. Liu, “Handbook of III-V Heterojunction Bipolar transistors,” John Wiley & Sons, New York, pp.142-152, 1998.
[78] W. Liu and J. S. Harris, “Diode ideality factor for surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 39, pp. 2726-2732, 1992.
[79] B. Mazhari, G. B. Gao, and H. Morkoc, “Collector-emitter offset voltage in heterojunction bipolar transistors,” Solid-State Electron, vol. 34, pp. 315-321, 1991.
[80] B. Willen, U. Westergren, and H. Asonen, “High-gain, high-speed InP/InGaAs double-heterojunction bipolar transistor with a step-graded base-collector heterojunction,” IEEE Trans. Electron Device Lett., vol. 16, pp. 479-481, 1995.
[81] S. S. Tan and A. G. Milnes, “Consideration of the frequency performance potential of GaAs homojunction and heterojunction n-p-n transistors,” IEEE Trans. Electron Devices, vol. ED-30, p.1289, 1983.
[82] T. Ishibashi and Y. Yamauchi, “A possible near-ballistic collection in an AlGaAs/GaAs HBT with a modified collector structure,” IEEE Trans. Electron Devices, vol. ED-35, p.401, 1988.
[83] E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett., vol. 60, pp. 371-373, 1992.
[84] J. I. Song, C. Caneau, K-B Chough, and W. P. Hong, “GaInP/GaAs double heterojunction bipolar transistor with high fT, fmax, and breakdown voltage,” IEEE Electron Device Lett, vol. EDL-15, p.10, 1994.
[85] M. Borgarino, R. Plana, S. L. Delage, F. Fantini, and J. Graffeuil, “Influence of surface recombination on the burn-in effect in microwave GaInP/GaAs HBT's,” IEEE Trans. Electron Devices, vol. 46, pp. 10-16, 1999.
[86] C. Y. Chen, S.Y. Cheng, W. H. Chiou, H. M. Chuang, R. C. Liu, C. H. Yen, J. Y. Chen, C. C. Cheng, and W. C. Liu, “DC Characterization of an InP-InGaAs Tunneling Emitter Bipolar Transistor (TEBT),” IEEE Trans. Electron Devices, vol. 50, pp. 874-879, 2003.
[87] S. Y. Cheng, J. Y. Chen, C. Y. Chen, H. M. Chuang, C. H. Yen, K. M. Lee and W. C. Liu “Comprehensive study of InGaP / AlXGa1-XAs /GaAs heterojunction bipolar transistors (HBTs) with different doping concentrations of AlXGa1-XAs graded layers”, Semicond. Sci. Technol., vol.19, pp.351-358, 2004.
[88] E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett., vol. 60, pp. 371-373, 1992.
[89] Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface recombination current in InGaP/GaAs heterojunction-emitter bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 643-647, 1994.
[90] K. Ikossi-Anastasiou, A. Ezis, K. R. Evans, and C. E. Stutz, “Low-temperature characterization of high-current-gain graded-emitter AlGaAs/GaAs narrow-base heterojunction bipolar transistor,” IEEE Trans. Electron Device Lett., vol. 13, pp. 414-417, 1992.
[91] C. Y. Sun and W. C. Liu, “A new GaAs bipolar transistor with a doping-superlattice collector,” Solid-State Electron., vol. 35, no. 6, pp. 751-757, 1992.
[92] W. S. Lour, W. C. Liu, D. F. Guo, and R. C. Liu, “Modeling the DC performance of hetrostructure-emitter bipolar transistor,” Jpn. J. Appl. phys., vol. 31, no. 8, pp. 2388-2393, 1992.
[93] W. C. Liu, W. S. Lour, and Y. H. Wang, “Investigation of AlGaAs/GaAs superlattice-emitter resonant-tunneling bipolar transistor (SE-RTBT),” IEEE Trans. Electron Device, vol. 39, no. 10, pp. 2214-2219, 1992.
[94] M. T. Fresina, Q. J. Hartmann, G. E. Stillman, “Selective self-aligned emitter ledge formation for heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 17, pp. 555-556, 1996.
[95] M. Hafizi, “Submicron, fully self-aligned HBT with an emitter geometry of 0.3μm,” IEEE Trans. Electron Device Lett., vol. 18, pp. 358-360, 1997.
[96] Schumacher, L. G. Shantherama, J. R. Hayes, R. Bhat, R. Esagui, and M. Koza, “High-speed self-aligned InP/InGaAs double heterojunction bipolar transistor with high current driving capability,” IEE Electronics Lett., vol. 24, pp. 1293-1294, 1998.
[97] M. Hafizi, D. C. Streit, L. T. Tran, K. W. Kobayashi, D. K. Umemodo, A. K. Oki, and S. K. Wang, “Experimental study of AlGaAs/GaAs HBT device design for power application,” IEEE Electron Device Lett., vol.12, No.11, pp.581-583, 1991.
[98] T. R. Chen, P. C. Chen, C. Gee, and N. B. Chaim, “A high-speed InGaAsP/InP DFB laser with an air-bridge contact configuration,” IEEE Photon. Technol. Lett., vol. 5, No.1, pp. 1-3, 1993.
[99] T. Fresina, D. A. Ahmari, P. J. Maries, Q. J. Hartmann, M. Feng, and G. E. Stillman, “High-speed, low noise InGaP/GaAs heterojunction bipolar transistors,” IEEE Electron Device Lett., vol.16, No.12, pp.540-541, 1995.
[100] F. Li, G. Post, Y. Nissim, a. Falcou, C. Courbet, S. Sanchez, and A. Scavennec, “A backside via holes etching technology for indium phosphide MMIC's,” International conference on Microwave and Millimeter wave technology proceedings, pp.64-67, 2000.