簡易檢索 / 詳目顯示

研究生: 臧苡伶
Tsang, Yi-Ling
論文名稱: SIRT1與NLRP3發炎體活化過程中之交互作用
Interaction between SIRT1 and NLRP3 inflammasome activation
指導教授: 蔡曜聲
Tsai, Yau-Sheng
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 52
中文關鍵詞: Sirtuin 1NLRP3 發炎體白細胞介素- IL-1β去乙醯化
外文關鍵詞: SIRT1, NLRP3 inflammasome, IL-1β, Acetylation
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多代謝疾病的發生都與慢性發炎相關,像是糖尿病及痛風等。研究指出 IL-1β
    與這些代謝疾病的發生息息相關。IL-1β 是一種促進發炎的激素,其釋放是經由
    一個 名叫發炎體的蛋白質聚合體所調控。因此,調控發炎體(Inflammasome)的活
    化對於代 謝疾病的進程有其重要性。Sirtuin1(SIRT1)為一種 NAD+-dependent
    去乙醯酶,調控細 胞對於壓力的反應。已知 SIRT1 可藉由抑制 NF-κB 所調控
    的轉錄,進而減少 IL-1β 的產生,並且參與在許多代謝性疾病中。因此,我們認為
    SIRT1 除了在影響 IL-1β 的 轉錄外,在發炎體組裝並切割 IL-1β 的過程中也
    扮演重要的角色。首先,我們發現在 NLRP3 發炎體活化過程中蛋白乙醯化的表
    現會跟著上升,並且與 NLRP3 也發生乙醯化作用。其 中 SIRT1 會單獨與
    NLRP3 發炎體的蛋白 NLRP3 有作用,並且 NLRP3 在發 炎體活化過程中有乙
    醯化的現象。SIRT1 的表現也影響了NLRP3 oligomerization, 然而,截短 SIRT1
    的N 端功能區域影響 SIRT1 與 NLRP3 發炎體的作用,也使 SIRT1 失去抑制
    IL-1β 分泌的功能。但是NLRP3 LRR 端並不是與SIRT1 作用的片段 。由上
    述實驗證明,SIRT1 可能藉由與 NLRP3 結合,影響 NLRP3 的乙醯化,進而抑制
    NLRP3 發炎體的活化。因此,我們 的研究結果發現了 SIRT1 在抑制 NLRP3
    發炎體的角色,並且提供了 SIRT1 在未來治 療發炎體相關疾病的可能性。

    The immune system protects the body from numerous pathogenic microbes and
    toxins in our environment. When cells respond to microbial infection or
    endogenous molecules, NF-κB translocates into the nucleus and regulates the
    expression of NLRP3 and pro-IL-1β. NLRP3 is a member of Nod-like receptors
    family that controls the activivation of multi-protein complexes called
    "inflammasomes". SIRT1 is a NAD+-dependent deacetylase and functions to
    increase cellular resistance against stress. Moreover, SIRT1 is also reported to
    inhibit acetylation of NF-κB and production of IL-1β. Thus, we hypothesize that
    SIRT1 inhibits NLRP3 inflammasome activation through interaction with and
    deacetylation of NLRP3. First, we found that resveratrol suppressed MSU-induced neutrophil infiltration in mice, suggesting that NLRP3 activity was
    inhibited by resveratrol in vivo. Immunoprecipitation analyses showed that NLRP3 was acetylated during NLRP3 inflammasome activation, and resveratrol
    abrogated this effect. However, the mutation of potentially acetylated residues,
    K384 and K619, on NLRP3, which were predicted by bioinformatic tools, did
    not change NLRP3 inflammasome activation. SIRT1 was co-localized and
    interacted with NLRP3, reflected by immunofluorescence and coimmunoprecipitation analyses. Co-transfection of SIRT1 abolished NLRP3
    oligomerization, but not ASC oligomerization. Deletion of SIRT1 N-terminal
    domain impaired the interaction with NLRP3 and inhibitory effect of SIRT1 on
    IL-1β production. While leucine rich repeat (LRR) domain is frequently
    involved in the protein-protein interaction, deletion of NLRP3 LRR domain did not abolish the binding of NLRP3 with SIRT1. Wild-type SIRT1 was still able
    to attenuate inflammasome activation resulted from LRR-deleted NLRP3. Our
    study demonstrates a novel function of SIRT1 N-terminal in attenuation of
    NLRP3 inflammasome activation and provides a potential therapeutic strategy
    for treatment of inflammasome-associated diseases.

    Abstract ……………………………………………………………………….. I Abstract in Chinese ………………………………………………………….... III Achnowlegement………………………………………………………………. IV Contents ……………………………………………………………………….. VI Introduction …………………………………………………………………… 1 Innate immunity and toll-like receptors…………………………………….. 1 NOD-like receptors…………………………………………………………. 2 Inflammasome complex…………………………………………………….. 2 Activation of NLRP3 inflammasome……………………………………….. 3 Activators of NLRP3 inflammasome……………………………………….. 4 NLRP3 inflammasome-related disease and its therapeutic strategies………. 5 Post-translational modification of NLRP3 inflammasome………….………. 6 Sirtuin 1……...………………………………………………………………. 6 SIRT1 activator………………………………………………………………. 7 Characteristics of SIRT1 domains…………………………………………..... 8 Rationale…...…………………………………………………………………. 8 Significance…………………………………………………………………... 9 Materials and Methods………………………………………………………... 10 P er it on eal macrophage isolation and treatment………………………………. 10 Cellular protein extraction…………………………………………………..... 11 Culture medium protein extraction…………………………………………... 11 Western blotting……………………………………………………………… 11 Immunofluorescence………………………………………………………...... 12 Immunoprecipitation………………………………………………………...... 12 ASC oligomerization assay………………………………………………........ 13 Mice………………………………………………............................................ 14 Preparation of MSU crystals………………………………………………...... 14 MSU crystal–induced peritonitis.……………………………………………... 14 Results…………………………………………………………………………... 1 5 Resveratrol suppressed NLRP3 activation in vivo……………………………. 15 Acetylation levels were changed during the NLRP3 inflammasome activation 15 NLRP3 could potentially be acetylated………………………………….......... 16 Acetylation of K384 and K619 on NLRP3 did not change its activity……….. 17 SIRT1 interacted with NLRP3 during the inflammasome activation process... 17 SIRT1 co-localized with NLRP3……………………………………………... 18 SIRT1 regulated NLRP3 oligomerization…………………………………...... 19 N-terminal deletion of SIRT1 decreased SIRT1 deacetylase activity………... 19 SIRT1 N-terminal domain regulated NLRP3 inflammasome activation through its interaction with NLRP3…………………………………………... 20 NLRP3 LRR domain was not involved in NLRP3-SIRT1 interaction……...... 20 Discussion ……………………………………………………………………… 22 References ………………………………………………………………………. 31 Figures……………………………………………………………………………4 1

    [1] T. Strowig, J. Henao-Mejia, E. Elinav, and R. Flavell, “Inflammasomes
    in health and disease,” Nature, vol. 481, no. 7381, pp. 278–286, 2012.
    [2] K. Schroder and J. Tschopp, “The inflammasomes,” Cell, vol. 140, no. 6,
    pp. 821–832, 2010.
    [3] K. H. G. Mills, “TLR-dependent T cell activation in autoimmunity,” Nat.
    Rev. Immunol., vol. 11, no. 12, pp. 807–822, 2011.
    [4] T. Dzopalic, I. Rajkovic, A. Dragicevic, and M. Colic, “The response of
    human dendritic cells to co-ligation of pattern-recognition receptors,”
    Immunol. Res., vol. 52, no. 1–2, pp. 20–33, 2012.
    [5] R. Medzhitov and C. Janeway Jr., “Innate immune recognition:
    mechanisms and pathways,” Immunol Rev, vol. 173, pp. 89–97, 2000.
    [6] E. V. Koonin and L. Aravind, “The NACHT family - A new group of
    predicted NTPases implicated in apoptosis and MHC transcription
    activation,” Trends Biochem. Sci., vol. 25, no. 5, pp. 223–224, 2000.
    [7] T. a Kufer and P. J. Sansonetti, “NLR functions beyond pathogen
    recognition,” Nat. Immunol., vol. 12, no. 2, pp. 121–128, 2011.
    [8] J. P.-Y. Ting and B. K. Davis, “CATERPILLER: a novel gene family
    important in immunity, cell death, and diseases.,” Annu. Rev. Immunol.,
    vol. 23, pp. 387–414, 2005.
    [9] A. Lu, V. G. Magupalli, J. Ruan, Q. Yin, M. K. Atianand, M. R. Vos, G.
    F. Schr??der, K. A. Fitzgerald, H. Wu, and E. H. Egelman, “Unified
    polymerization mechanism for the assembly of asc-dependent
    ! 32!
    inflammasomes,” Cell, vol. 156, no. 6, pp. 1193–1206, 2014.
    [10] J. A. Duncan, D. T. Bergstralh, Y. Wang, S. B. Willingham, Z. Ye, A. G.
    Zimmermann, and J. P. Ting, “Cryopyrin/NALP3 binds ATP/dATP, is
    an ATPase, and requires ATP binding to mediate inflammatory
    signaling,” Proc. Natl. Acad. Sci. U. S. A., vol. 104, no. 19, pp. 8041–
    8046, 2007.
    [11] S. Mariathasan, D. S. Weiss, K. Newton, J. McBride, K. O’Rourke, M.
    Roose-Girma, W. P. Lee, Y. Weinrauch, D. M. Monack, and V. M.
    Dixit, “Cryopyrin activates the inflammasome in response to toxins and
    ATP,” Nature, vol. 440, no. 7081, pp. 228–232, 2006.
    [12] L. Franchi, T. Eigenbrod, and G. Núñez, “Cutting edge: TNF-alpha
    mediates sensitization to ATP and silica via the NLRP3 inflammasome
    in the absence of microbial stimulation.,” J. Immunol., vol. 183, no. 2,
    pp. 792–6, 2009.
    [13] F. G. Bauernfeind, G. Horvath, A. Stutz, E. S. Alnemri, K. MacDonald,
    D. Speert, T. Fernandes-Alnemri, J. Wu, B. G. Monks, K. A. Fitzgerald,
    V. Hornung, and E. Latz, “Cutting Edge: NF- B Activating Pattern
    Recognition and Cytokine Receptors License NLRP3 Inflammasome
    Activation by Regulating NLRP3 Expression,” J. Immunol., vol. 183, no.
    2, pp. 787–791, 2009.
    [14] K. Schroder, V. Sagulenko, A. Zamoshnikova, A. A. Richards, J. A.
    Cridland, K. M. Irvine, K. J. Stacey, and M. J. Sweet, “Acute
    lipopolysaccharide priming boosts inflammasome activation
    ! 33!
    independently of inflammasome sensor induction,” Immunobiology, vol.
    217, no. 12, pp. 1325–1329, 2012.
    [15] V. Hornung, F. Bauernfeind, A. Halle, E. O. Samstad, H. Kono, K. L.
    Rock, K. A. Fitzgerald, and E. Latz, “Silica crystals and aluminum salts
    activate the NALP3 inflammasome through phagosomal destabilization,”
    Nat Immunol, vol. 9, no. 8, pp. 847–856, 2008.
    [16] S. C. Eisenbarth, O. R. Colegio, W. O’Connor, F. S. Sutterwala, and R.
    A. Flavell, “Crucial role for the Nalp3 inflammasome in the
    immunostimulatory properties of aluminium adjuvants.,” Nature, vol.
    453, no. 7198, pp. 1122–1126, 2008.
    [17] F. Martinon, V. Petrilli, A. Mayor, A. Tardivel, and J. Tschopp, “Goutassociated
    uric acid crystals activate the NALP3 inflammasome,”
    Nature, vol. 440, no. 7081, pp. 237–241, 2006.
    [18] C. Dostert, V. Pétrilli, R. Van Bruggen, C. Steele, B. T. Mossman, and J.
    Tschopp, “Asbestos and Silica,” Science (80-. )., vol. 674, no. May, pp.
    674–677, 2008.
    [19] P. Pelegrin and A. Surprenant, “Pannexin-1 couples to maitotoxin- and
    nigericin-induced interleukin-1?? release through a dye uptakeindependent
    pathway,” J. Biol. Chem., vol. 282, no. 4, pp. 2386–2394,
    2007.
    [20] R. Zhou, A. Tardivel, B. Thorens, I. Choi, and J. Tschopp, “Thioredoxininteracting
    protein links oxidative stress to inflammasome activation,”
    Nat Immunol, vol. 11, no. 2, pp. 136–140, 2010.
    ! 34!
    [21] R. Zhou, A. S. Yazdi, P. Menu, and J. Tschopp, “A role for mitochondria
    in NLRP3 inflammasome activation,” Nature, vol. 469, pp. 221–5, 2010.
    [22] K. Nakahira, J. A. Haspel, V. A. K. Rathinam, S.-J. Lee, T. Dolinay, H.
    C. Lam, J. A. Englert, M. Rabinovitch, M. Cernadas, H. P. Kim, K. A.
    Fitzgerald, S. W. Ryter, and A. M. K. Choi, “Autophagy proteins
    regulate innate immune responses by inhibiting the release of
    mitochondrial DNA mediated by the NALP3 inflammasome.,” Nat.
    Immunol., vol. 12, no. 3, pp. 222–30, 2011.
    [23] F. Bauernfeind, E. Bartok, A. Rieger, L. Franchi, G. Núñez, and V.
    Hornung, “Cutting edge: Reactive oxygen species inhibitors block
    priming, but not activation, of the NLRP3 inflammasome.,” J. Immunol.,
    vol. 187, no. 2, pp. 613–617, 2011.
    [24] B. Vandanmagsar, Y.-H. Youm, A. Ravussin, J. E. Galgani, K. Stadler,
    R. L. Mynatt, E. Ravussin, J. M. Stephens, and V. D. Dixit, “The NLRP3
    inflammasome instigates obesity-induced inflammation and insulin
    resistance.,” Nat. Med., vol. 17, no. 2, pp. 179–188, 2011.
    [25] M. A. Febbraio, “Role of interleukins in obesity: Implications for
    metabolic disease,” Trends Endocrinol. Metab., vol. 25, no. 6, pp. 312–
    319, 2014.
    [26] C. A. Dinarello, M. Y. Donath, and T. Mandrup-poulsen, “Role of IL-1 b
    in type 2 diabetes.”
    [27] M. Moll and J. B. Kuemmerle-Deschner, “Inflammasome and cytokine
    blocking strategies in autoinflammatory disorders.,” Clin. Immunol., vol.
    ! 35!
    147, no. 3, pp. 242–275, 2013.
    [28] G. Schett, J.-M. Dayer, and B. Manger, “Interleukin-1 function and role
    in rheumatic disease,” Nat. Rev. Rheumatol., vol. 12, no. 1, pp. 14–24,
    2015.
    [29] B. F. Py, M.-S. Kim, H. Vakifahmetoglu-Norberg, and J. Yuan,
    “Deubiquitination of NLRP3 by BRCC3 Critically Regulates
    Inflammasome Activity,” Mol. Cell, vol. 49, no. 2, pp. 331–338, 2013.
    [30] G. Lopez-Castejon, N. M. Luheshi, V. Compan, S. High, R. C.
    Whitehead, S. Flitsch, A. Kirov, I. Prudovsky, E. Swanton, and D.
    Brough, “Deubiquitinases regulate the activity of caspase-1 and
    interleukin-1?? secretion via assembly of the inflammasome,” J. Biol.
    Chem., vol. 288, no. 4, pp. 2721–2733, 2013.
    [31] E. Hernandez-Cuellar, K. Tsuchiya, H. Hara, R. Fang, S. Sakai, I.
    Kawamura, S. Akira, and M. Mitsuyama, “Nitric oxide inhibits the
    NLRP3 inflammasome,” J. Immunol., vol. 189, no. 11, pp. 5113–5117,
    2012.
    [32] H. Hara, K. Tsuchiya, I. Kawamura, R. Fang, E. Hernandez-Cuellar, Y.
    Shen, J. Mizuguchi, E. Schweighoffer, V. Tybulewicz, and M.
    Mitsuyama, “Phosphorylation of the adaptor ASC acts as a molecular
    switch that controls the formation of speck-like aggregates and
    inflammasome activity.,” Nat. Immunol., vol. 14, no. 12, pp. 1247–55,
    2013.
    [33] S. Bose, J. A. Segovia, S. R. Somarajan, T. H. Chang, T. R. Kannan, and
    ! 36!
    J. B. Baseman, “ADP-Ribosylation of NLRP3 by Mycoplasma
    pneumoniae CARDS toxin regulates inflammasome activity,” MBio, vol.
    5, no. 6, pp. 1–11, 2014.
    [34] S. Imai, C. M. Armstrong, M. Kaeberlein, and L. Guarente,
    “Transcriptional silencing and longevity protein Sir2 is an NADdependent
    histone deacetylase.,” Nature, vol. 403, no. 6771, pp. 795–
    800, 2000.
    [35] M. Tanno, J. Sakamoto, T. Miura, K. Shimamoto, and Y. Horio,
    “Nucleocytoplasmic shuttling of the NAD+-dependent histone
    deacetylase SIRT1,” J. Biol. Chem., vol. 282, no. 9, pp. 6823–6832,
    2007.
    [36] M. W. McBurney, X. Yang, K. Jardine, M. Hixon, K. Boekelheide, J. R.
    Webb, P. M. Lansdorp, and M. Lemieux, “The mammalian SIR2alpha
    protein has a role in embryogenesis and gametogenesis.,” Mol. Cell.
    Biol., vol. 23, no. 1, pp. 38–54, 2003.
    [37] F. Yeung, J. E. Hoberg, C. S. Ramsey, M. D. Keller, D. R. Jones, R. A.
    Frye, and M. W. Mayo, “Modulation of NF-kB-dependent transcription
    and cell survival by the SIRT1 deacetylase,” EMBO J., vol. 23, no. 12,
    pp. 2369–2380, 2004.
    [38] M. Tanno, A. Kuno, T. Yano, T. Miura, S. Hisahara, S. Ishikawa, K.
    Shimamoto, and Y. Horio, “Induction of manganese superoxide
    dismutase by nuclear translocation and activation of SIRT1 promotes cell
    survival in chronic heart failure,” J. Biol. Chem., vol. 285, no. 11, pp.
    ! 37!
    8375–8382, 2010.
    [39] S. Hisahara, S. Chiba, H. Matsumoto, M. Tanno, H. Yagi, S.
    Shimohama, M. Sato, and Y. Horio, “Histone deacetylase SIRT1
    modulates neuronal differentiation by its nuclear translocation.,” Proc.
    Natl. Acad. Sci. U. S. A., vol. 105, no. 40, pp. 15599–15604, 2008.
    [40] K. Howitz, J. Bitterman, and H. Cohen, “Small molecule activators of
    sirtuins extend Saccharomyces cerevisiae lifespan,” Nature, vol. 425, no.
    September, pp. 191–196, 2003.
    [41] J. A. Baur and D. A. Sinclair, “Therapeutic potential of resveratrol: the in
    vivo evidence,” Nat. Rev. Drug Discov., vol. 5, no. 6, pp. 493–506, 2006.
    [42] S. K. Manna, A. Mukhopadhyay, and B. B. Aggarwal, “Resveratrol
    Suppresses TNF-Induced Activation of Nuclear Transcription Factors
    NF- B, Activator Protein-1, and Apoptosis: Potential Role of Reactive
    Oxygen Intermediates and Lipid Peroxidation,” J. Immunol., vol. 164,
    no. 12, pp. 6509–6519, 2000.
    [43] H. Kang, J.-Y. Suh, Y.-S. Jung, J.-W. Jung, M. K. Kim, and J. H. Chung,
    “Peptide Switch Is Essential for Sirt1 Deacetylase Activity,” Mol. Cell,
    vol. 44, no. 2, pp. 203–213, 2011.
    [44] E. J. Kim, J. H. Kho, M. R. Kang, and S. J. Um, “Active regulator of
    SIRT1 cooperates with SIRT1 and facilitates suppression of p53
    activity,” Mol Cell, vol. 28, no. 2, pp. 277–290, 2007.
    [45] W. Zhao, J. P. Kruse, Y. Tang, S. Y. Jung, J. Qin, and W. Gu, “Negative
    regulation of the deacetylase SIRT1 by DBC1,” Nature, vol. 451, no.
    ! 38!
    7178, pp. 587–590, 2008.
    [46] J.-E. Kim, J. Chen, and Z. Lou, “DBC1 is a negative regulator of
    SIRT1.,” Nature, vol. 451, no. 7178, pp. 583–586, 2008.
    [47] G. Donmez and L. Guarente, “Aging and disease: Connections to
    sirtuins,” Aging Cell, vol. 9, no. 2, pp. 285–290, 2010.
    [48] H. Vaziri, S. K. Dessain, E. N. Eaton, S. I. Imai, R. A. Frye, T. K.
    Pandita, L. Guarente, and R. A. Weinberg, “hSIR2SIRT1 functions as an
    NAD-dependent p53 deacetylase,” Cell, vol. 107, no. 2, pp. 149–159,
    2001.
    [49] B. Kobe, “The leucine-rich repeat as a protein recognition motif,” Curr.
    Opin. Struct. Biol., vol. 11, no. 6, pp. 725–732, 2001.
    [50] Y.-P. Chang, S.-M. Ka, W.-H. Hsu, A. Chen, L. K. Chao, C.-C. Lin, C.-
    C. Hsieh, M.-C. Chen, H.-W. Chiu, C.-L. Ho, Y.-C. Chiu, M.-L. Liu, and
    K.-F. Hua, “Resveratrol inhibits NLRP3 inflammasome activation by
    preserving mitochondrial integrity and augmenting autophagy,” J. Cell.
    Physiol., vol. 230, no. 7, pp. 1567–1579, 2015.
    [51] C. Meng, D. Xing, S. Wu, and L. Huang, “Growth factor deprivation
    induces cytosolic translocation of SIRT1,” vol. 7565, pp. 1–8, 2010.
    [52] R. C. Coll, A. a B. Robertson, J. J. Chae, S. C. Higgins, R. Muñoz-
    Planillo, M. C. Inserra, I. Vetter, L. S. Dungan, B. G. Monks, A. Stutz,
    D. E. Croker, M. S. Butler, M. Haneklaus, C. E. Sutton, G. Núñez, E.
    Latz, D. L. Kastner, K. H. G. Mills, S. L. Masters, K. Schroder, M. a
    Cooper, and L. a J. O’Neill, “A small-molecule inhibitor of the NLRP3
    ! 39!
    inflammasome for the treatment of inflammatory diseases,” Nat. Med.,
    no. October 2014, 2015.
    [53] F. Ghisays, C. S. Brace, S. M. Yackly, H. J. Kwon, K. F. Mills, E.
    Kashentseva, I. P. Dmitriev, D. T. Curiel, S. Imai, and T. Ellenberger,
    “The N-Terminal Domain of SIRT1 Is a Positive Regulator of
    Endogenous SIRT1-Dependent Deacetylation and Transcriptional
    Outputs,” Cell Rep., vol. 10, no. 10, pp. 1665–1673, 2015.
    [54] L. de Almeida, S. Khare, A. V. Misharin, R. Patel, R. A. Ratsimandresy,
    M. C. Wallin, H. Perlman, D. R. Greaves, H. M. Hoffman, A.
    Dorfleutner, and C. Stehlik, “The PYRIN Domain-only Protein POP1
    Inhibits Inflammasome Assembly and Ameliorates Inflammatory
    Disease,” Immunity, vol. 43, no. 2, pp. 264–276, 2015.
    [55] J. J. Chae, I. Aksentijevich, and D. L. Kastner, “Advances in the
    understanding of familial Mediterranean fever and possibilities for
    targeted therapy,” Br. J. Haematol., vol. 146, no. 5, pp. 467–478, 2009.
    [56] J. C. Milne, P. D. Lambert, S. Schenk, D. P. Carney, J. J. Smith, D. J.
    Gagne, L. Jin, O. Boss, R. B. Perni, C. B. Vu, J. E. Bemis, R. Xie, J. S.
    Disch, P. Y. Ng, J. J. Nunes, A. V Lynch, H. Yang, H. Galonek, K.
    Israelian, W. Choy, A. Iffland, S. Lavu, O. Medvedik, D. A. Sinclair, J.
    M. Olefsky, M. R. Jirousek, P. J. Elliott, and C. H. Westphal, “Small
    molecule activators of SIRT1 as therapeutics for the treatment of type 2
    diabetes.,” Nature, vol. 450, no. 7170, pp. 712–6, 2007.

    無法下載圖示 校內:2026-09-01公開
    校外:2026-09-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE