| 研究生: |
臧苡伶 Tsang, Yi-Ling |
|---|---|
| 論文名稱: |
SIRT1與NLRP3發炎體活化過程中之交互作用 Interaction between SIRT1 and NLRP3 inflammasome activation |
| 指導教授: |
蔡曜聲
Tsai, Yau-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | Sirtuin 1 、NLRP3 發炎體 、白細胞介素- IL-1β 、去乙醯化 |
| 外文關鍵詞: | SIRT1, NLRP3 inflammasome, IL-1β, Acetylation |
| 相關次數: | 點閱:75 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多代謝疾病的發生都與慢性發炎相關,像是糖尿病及痛風等。研究指出 IL-1β
與這些代謝疾病的發生息息相關。IL-1β 是一種促進發炎的激素,其釋放是經由
一個 名叫發炎體的蛋白質聚合體所調控。因此,調控發炎體(Inflammasome)的活
化對於代 謝疾病的進程有其重要性。Sirtuin1(SIRT1)為一種 NAD+-dependent
去乙醯酶,調控細 胞對於壓力的反應。已知 SIRT1 可藉由抑制 NF-κB 所調控
的轉錄,進而減少 IL-1β 的產生,並且參與在許多代謝性疾病中。因此,我們認為
SIRT1 除了在影響 IL-1β 的 轉錄外,在發炎體組裝並切割 IL-1β 的過程中也
扮演重要的角色。首先,我們發現在 NLRP3 發炎體活化過程中蛋白乙醯化的表
現會跟著上升,並且與 NLRP3 也發生乙醯化作用。其 中 SIRT1 會單獨與
NLRP3 發炎體的蛋白 NLRP3 有作用,並且 NLRP3 在發 炎體活化過程中有乙
醯化的現象。SIRT1 的表現也影響了NLRP3 oligomerization, 然而,截短 SIRT1
的N 端功能區域影響 SIRT1 與 NLRP3 發炎體的作用,也使 SIRT1 失去抑制
IL-1β 分泌的功能。但是NLRP3 LRR 端並不是與SIRT1 作用的片段 。由上
述實驗證明,SIRT1 可能藉由與 NLRP3 結合,影響 NLRP3 的乙醯化,進而抑制
NLRP3 發炎體的活化。因此,我們 的研究結果發現了 SIRT1 在抑制 NLRP3
發炎體的角色,並且提供了 SIRT1 在未來治 療發炎體相關疾病的可能性。
The immune system protects the body from numerous pathogenic microbes and
toxins in our environment. When cells respond to microbial infection or
endogenous molecules, NF-κB translocates into the nucleus and regulates the
expression of NLRP3 and pro-IL-1β. NLRP3 is a member of Nod-like receptors
family that controls the activivation of multi-protein complexes called
"inflammasomes". SIRT1 is a NAD+-dependent deacetylase and functions to
increase cellular resistance against stress. Moreover, SIRT1 is also reported to
inhibit acetylation of NF-κB and production of IL-1β. Thus, we hypothesize that
SIRT1 inhibits NLRP3 inflammasome activation through interaction with and
deacetylation of NLRP3. First, we found that resveratrol suppressed MSU-induced neutrophil infiltration in mice, suggesting that NLRP3 activity was
inhibited by resveratrol in vivo. Immunoprecipitation analyses showed that NLRP3 was acetylated during NLRP3 inflammasome activation, and resveratrol
abrogated this effect. However, the mutation of potentially acetylated residues,
K384 and K619, on NLRP3, which were predicted by bioinformatic tools, did
not change NLRP3 inflammasome activation. SIRT1 was co-localized and
interacted with NLRP3, reflected by immunofluorescence and coimmunoprecipitation analyses. Co-transfection of SIRT1 abolished NLRP3
oligomerization, but not ASC oligomerization. Deletion of SIRT1 N-terminal
domain impaired the interaction with NLRP3 and inhibitory effect of SIRT1 on
IL-1β production. While leucine rich repeat (LRR) domain is frequently
involved in the protein-protein interaction, deletion of NLRP3 LRR domain did not abolish the binding of NLRP3 with SIRT1. Wild-type SIRT1 was still able
to attenuate inflammasome activation resulted from LRR-deleted NLRP3. Our
study demonstrates a novel function of SIRT1 N-terminal in attenuation of
NLRP3 inflammasome activation and provides a potential therapeutic strategy
for treatment of inflammasome-associated diseases.
[1] T. Strowig, J. Henao-Mejia, E. Elinav, and R. Flavell, “Inflammasomes
in health and disease,” Nature, vol. 481, no. 7381, pp. 278–286, 2012.
[2] K. Schroder and J. Tschopp, “The inflammasomes,” Cell, vol. 140, no. 6,
pp. 821–832, 2010.
[3] K. H. G. Mills, “TLR-dependent T cell activation in autoimmunity,” Nat.
Rev. Immunol., vol. 11, no. 12, pp. 807–822, 2011.
[4] T. Dzopalic, I. Rajkovic, A. Dragicevic, and M. Colic, “The response of
human dendritic cells to co-ligation of pattern-recognition receptors,”
Immunol. Res., vol. 52, no. 1–2, pp. 20–33, 2012.
[5] R. Medzhitov and C. Janeway Jr., “Innate immune recognition:
mechanisms and pathways,” Immunol Rev, vol. 173, pp. 89–97, 2000.
[6] E. V. Koonin and L. Aravind, “The NACHT family - A new group of
predicted NTPases implicated in apoptosis and MHC transcription
activation,” Trends Biochem. Sci., vol. 25, no. 5, pp. 223–224, 2000.
[7] T. a Kufer and P. J. Sansonetti, “NLR functions beyond pathogen
recognition,” Nat. Immunol., vol. 12, no. 2, pp. 121–128, 2011.
[8] J. P.-Y. Ting and B. K. Davis, “CATERPILLER: a novel gene family
important in immunity, cell death, and diseases.,” Annu. Rev. Immunol.,
vol. 23, pp. 387–414, 2005.
[9] A. Lu, V. G. Magupalli, J. Ruan, Q. Yin, M. K. Atianand, M. R. Vos, G.
F. Schr??der, K. A. Fitzgerald, H. Wu, and E. H. Egelman, “Unified
polymerization mechanism for the assembly of asc-dependent
! 32!
inflammasomes,” Cell, vol. 156, no. 6, pp. 1193–1206, 2014.
[10] J. A. Duncan, D. T. Bergstralh, Y. Wang, S. B. Willingham, Z. Ye, A. G.
Zimmermann, and J. P. Ting, “Cryopyrin/NALP3 binds ATP/dATP, is
an ATPase, and requires ATP binding to mediate inflammatory
signaling,” Proc. Natl. Acad. Sci. U. S. A., vol. 104, no. 19, pp. 8041–
8046, 2007.
[11] S. Mariathasan, D. S. Weiss, K. Newton, J. McBride, K. O’Rourke, M.
Roose-Girma, W. P. Lee, Y. Weinrauch, D. M. Monack, and V. M.
Dixit, “Cryopyrin activates the inflammasome in response to toxins and
ATP,” Nature, vol. 440, no. 7081, pp. 228–232, 2006.
[12] L. Franchi, T. Eigenbrod, and G. Núñez, “Cutting edge: TNF-alpha
mediates sensitization to ATP and silica via the NLRP3 inflammasome
in the absence of microbial stimulation.,” J. Immunol., vol. 183, no. 2,
pp. 792–6, 2009.
[13] F. G. Bauernfeind, G. Horvath, A. Stutz, E. S. Alnemri, K. MacDonald,
D. Speert, T. Fernandes-Alnemri, J. Wu, B. G. Monks, K. A. Fitzgerald,
V. Hornung, and E. Latz, “Cutting Edge: NF- B Activating Pattern
Recognition and Cytokine Receptors License NLRP3 Inflammasome
Activation by Regulating NLRP3 Expression,” J. Immunol., vol. 183, no.
2, pp. 787–791, 2009.
[14] K. Schroder, V. Sagulenko, A. Zamoshnikova, A. A. Richards, J. A.
Cridland, K. M. Irvine, K. J. Stacey, and M. J. Sweet, “Acute
lipopolysaccharide priming boosts inflammasome activation
! 33!
independently of inflammasome sensor induction,” Immunobiology, vol.
217, no. 12, pp. 1325–1329, 2012.
[15] V. Hornung, F. Bauernfeind, A. Halle, E. O. Samstad, H. Kono, K. L.
Rock, K. A. Fitzgerald, and E. Latz, “Silica crystals and aluminum salts
activate the NALP3 inflammasome through phagosomal destabilization,”
Nat Immunol, vol. 9, no. 8, pp. 847–856, 2008.
[16] S. C. Eisenbarth, O. R. Colegio, W. O’Connor, F. S. Sutterwala, and R.
A. Flavell, “Crucial role for the Nalp3 inflammasome in the
immunostimulatory properties of aluminium adjuvants.,” Nature, vol.
453, no. 7198, pp. 1122–1126, 2008.
[17] F. Martinon, V. Petrilli, A. Mayor, A. Tardivel, and J. Tschopp, “Goutassociated
uric acid crystals activate the NALP3 inflammasome,”
Nature, vol. 440, no. 7081, pp. 237–241, 2006.
[18] C. Dostert, V. Pétrilli, R. Van Bruggen, C. Steele, B. T. Mossman, and J.
Tschopp, “Asbestos and Silica,” Science (80-. )., vol. 674, no. May, pp.
674–677, 2008.
[19] P. Pelegrin and A. Surprenant, “Pannexin-1 couples to maitotoxin- and
nigericin-induced interleukin-1?? release through a dye uptakeindependent
pathway,” J. Biol. Chem., vol. 282, no. 4, pp. 2386–2394,
2007.
[20] R. Zhou, A. Tardivel, B. Thorens, I. Choi, and J. Tschopp, “Thioredoxininteracting
protein links oxidative stress to inflammasome activation,”
Nat Immunol, vol. 11, no. 2, pp. 136–140, 2010.
! 34!
[21] R. Zhou, A. S. Yazdi, P. Menu, and J. Tschopp, “A role for mitochondria
in NLRP3 inflammasome activation,” Nature, vol. 469, pp. 221–5, 2010.
[22] K. Nakahira, J. A. Haspel, V. A. K. Rathinam, S.-J. Lee, T. Dolinay, H.
C. Lam, J. A. Englert, M. Rabinovitch, M. Cernadas, H. P. Kim, K. A.
Fitzgerald, S. W. Ryter, and A. M. K. Choi, “Autophagy proteins
regulate innate immune responses by inhibiting the release of
mitochondrial DNA mediated by the NALP3 inflammasome.,” Nat.
Immunol., vol. 12, no. 3, pp. 222–30, 2011.
[23] F. Bauernfeind, E. Bartok, A. Rieger, L. Franchi, G. Núñez, and V.
Hornung, “Cutting edge: Reactive oxygen species inhibitors block
priming, but not activation, of the NLRP3 inflammasome.,” J. Immunol.,
vol. 187, no. 2, pp. 613–617, 2011.
[24] B. Vandanmagsar, Y.-H. Youm, A. Ravussin, J. E. Galgani, K. Stadler,
R. L. Mynatt, E. Ravussin, J. M. Stephens, and V. D. Dixit, “The NLRP3
inflammasome instigates obesity-induced inflammation and insulin
resistance.,” Nat. Med., vol. 17, no. 2, pp. 179–188, 2011.
[25] M. A. Febbraio, “Role of interleukins in obesity: Implications for
metabolic disease,” Trends Endocrinol. Metab., vol. 25, no. 6, pp. 312–
319, 2014.
[26] C. A. Dinarello, M. Y. Donath, and T. Mandrup-poulsen, “Role of IL-1 b
in type 2 diabetes.”
[27] M. Moll and J. B. Kuemmerle-Deschner, “Inflammasome and cytokine
blocking strategies in autoinflammatory disorders.,” Clin. Immunol., vol.
! 35!
147, no. 3, pp. 242–275, 2013.
[28] G. Schett, J.-M. Dayer, and B. Manger, “Interleukin-1 function and role
in rheumatic disease,” Nat. Rev. Rheumatol., vol. 12, no. 1, pp. 14–24,
2015.
[29] B. F. Py, M.-S. Kim, H. Vakifahmetoglu-Norberg, and J. Yuan,
“Deubiquitination of NLRP3 by BRCC3 Critically Regulates
Inflammasome Activity,” Mol. Cell, vol. 49, no. 2, pp. 331–338, 2013.
[30] G. Lopez-Castejon, N. M. Luheshi, V. Compan, S. High, R. C.
Whitehead, S. Flitsch, A. Kirov, I. Prudovsky, E. Swanton, and D.
Brough, “Deubiquitinases regulate the activity of caspase-1 and
interleukin-1?? secretion via assembly of the inflammasome,” J. Biol.
Chem., vol. 288, no. 4, pp. 2721–2733, 2013.
[31] E. Hernandez-Cuellar, K. Tsuchiya, H. Hara, R. Fang, S. Sakai, I.
Kawamura, S. Akira, and M. Mitsuyama, “Nitric oxide inhibits the
NLRP3 inflammasome,” J. Immunol., vol. 189, no. 11, pp. 5113–5117,
2012.
[32] H. Hara, K. Tsuchiya, I. Kawamura, R. Fang, E. Hernandez-Cuellar, Y.
Shen, J. Mizuguchi, E. Schweighoffer, V. Tybulewicz, and M.
Mitsuyama, “Phosphorylation of the adaptor ASC acts as a molecular
switch that controls the formation of speck-like aggregates and
inflammasome activity.,” Nat. Immunol., vol. 14, no. 12, pp. 1247–55,
2013.
[33] S. Bose, J. A. Segovia, S. R. Somarajan, T. H. Chang, T. R. Kannan, and
! 36!
J. B. Baseman, “ADP-Ribosylation of NLRP3 by Mycoplasma
pneumoniae CARDS toxin regulates inflammasome activity,” MBio, vol.
5, no. 6, pp. 1–11, 2014.
[34] S. Imai, C. M. Armstrong, M. Kaeberlein, and L. Guarente,
“Transcriptional silencing and longevity protein Sir2 is an NADdependent
histone deacetylase.,” Nature, vol. 403, no. 6771, pp. 795–
800, 2000.
[35] M. Tanno, J. Sakamoto, T. Miura, K. Shimamoto, and Y. Horio,
“Nucleocytoplasmic shuttling of the NAD+-dependent histone
deacetylase SIRT1,” J. Biol. Chem., vol. 282, no. 9, pp. 6823–6832,
2007.
[36] M. W. McBurney, X. Yang, K. Jardine, M. Hixon, K. Boekelheide, J. R.
Webb, P. M. Lansdorp, and M. Lemieux, “The mammalian SIR2alpha
protein has a role in embryogenesis and gametogenesis.,” Mol. Cell.
Biol., vol. 23, no. 1, pp. 38–54, 2003.
[37] F. Yeung, J. E. Hoberg, C. S. Ramsey, M. D. Keller, D. R. Jones, R. A.
Frye, and M. W. Mayo, “Modulation of NF-kB-dependent transcription
and cell survival by the SIRT1 deacetylase,” EMBO J., vol. 23, no. 12,
pp. 2369–2380, 2004.
[38] M. Tanno, A. Kuno, T. Yano, T. Miura, S. Hisahara, S. Ishikawa, K.
Shimamoto, and Y. Horio, “Induction of manganese superoxide
dismutase by nuclear translocation and activation of SIRT1 promotes cell
survival in chronic heart failure,” J. Biol. Chem., vol. 285, no. 11, pp.
! 37!
8375–8382, 2010.
[39] S. Hisahara, S. Chiba, H. Matsumoto, M. Tanno, H. Yagi, S.
Shimohama, M. Sato, and Y. Horio, “Histone deacetylase SIRT1
modulates neuronal differentiation by its nuclear translocation.,” Proc.
Natl. Acad. Sci. U. S. A., vol. 105, no. 40, pp. 15599–15604, 2008.
[40] K. Howitz, J. Bitterman, and H. Cohen, “Small molecule activators of
sirtuins extend Saccharomyces cerevisiae lifespan,” Nature, vol. 425, no.
September, pp. 191–196, 2003.
[41] J. A. Baur and D. A. Sinclair, “Therapeutic potential of resveratrol: the in
vivo evidence,” Nat. Rev. Drug Discov., vol. 5, no. 6, pp. 493–506, 2006.
[42] S. K. Manna, A. Mukhopadhyay, and B. B. Aggarwal, “Resveratrol
Suppresses TNF-Induced Activation of Nuclear Transcription Factors
NF- B, Activator Protein-1, and Apoptosis: Potential Role of Reactive
Oxygen Intermediates and Lipid Peroxidation,” J. Immunol., vol. 164,
no. 12, pp. 6509–6519, 2000.
[43] H. Kang, J.-Y. Suh, Y.-S. Jung, J.-W. Jung, M. K. Kim, and J. H. Chung,
“Peptide Switch Is Essential for Sirt1 Deacetylase Activity,” Mol. Cell,
vol. 44, no. 2, pp. 203–213, 2011.
[44] E. J. Kim, J. H. Kho, M. R. Kang, and S. J. Um, “Active regulator of
SIRT1 cooperates with SIRT1 and facilitates suppression of p53
activity,” Mol Cell, vol. 28, no. 2, pp. 277–290, 2007.
[45] W. Zhao, J. P. Kruse, Y. Tang, S. Y. Jung, J. Qin, and W. Gu, “Negative
regulation of the deacetylase SIRT1 by DBC1,” Nature, vol. 451, no.
! 38!
7178, pp. 587–590, 2008.
[46] J.-E. Kim, J. Chen, and Z. Lou, “DBC1 is a negative regulator of
SIRT1.,” Nature, vol. 451, no. 7178, pp. 583–586, 2008.
[47] G. Donmez and L. Guarente, “Aging and disease: Connections to
sirtuins,” Aging Cell, vol. 9, no. 2, pp. 285–290, 2010.
[48] H. Vaziri, S. K. Dessain, E. N. Eaton, S. I. Imai, R. A. Frye, T. K.
Pandita, L. Guarente, and R. A. Weinberg, “hSIR2SIRT1 functions as an
NAD-dependent p53 deacetylase,” Cell, vol. 107, no. 2, pp. 149–159,
2001.
[49] B. Kobe, “The leucine-rich repeat as a protein recognition motif,” Curr.
Opin. Struct. Biol., vol. 11, no. 6, pp. 725–732, 2001.
[50] Y.-P. Chang, S.-M. Ka, W.-H. Hsu, A. Chen, L. K. Chao, C.-C. Lin, C.-
C. Hsieh, M.-C. Chen, H.-W. Chiu, C.-L. Ho, Y.-C. Chiu, M.-L. Liu, and
K.-F. Hua, “Resveratrol inhibits NLRP3 inflammasome activation by
preserving mitochondrial integrity and augmenting autophagy,” J. Cell.
Physiol., vol. 230, no. 7, pp. 1567–1579, 2015.
[51] C. Meng, D. Xing, S. Wu, and L. Huang, “Growth factor deprivation
induces cytosolic translocation of SIRT1,” vol. 7565, pp. 1–8, 2010.
[52] R. C. Coll, A. a B. Robertson, J. J. Chae, S. C. Higgins, R. Muñoz-
Planillo, M. C. Inserra, I. Vetter, L. S. Dungan, B. G. Monks, A. Stutz,
D. E. Croker, M. S. Butler, M. Haneklaus, C. E. Sutton, G. Núñez, E.
Latz, D. L. Kastner, K. H. G. Mills, S. L. Masters, K. Schroder, M. a
Cooper, and L. a J. O’Neill, “A small-molecule inhibitor of the NLRP3
! 39!
inflammasome for the treatment of inflammatory diseases,” Nat. Med.,
no. October 2014, 2015.
[53] F. Ghisays, C. S. Brace, S. M. Yackly, H. J. Kwon, K. F. Mills, E.
Kashentseva, I. P. Dmitriev, D. T. Curiel, S. Imai, and T. Ellenberger,
“The N-Terminal Domain of SIRT1 Is a Positive Regulator of
Endogenous SIRT1-Dependent Deacetylation and Transcriptional
Outputs,” Cell Rep., vol. 10, no. 10, pp. 1665–1673, 2015.
[54] L. de Almeida, S. Khare, A. V. Misharin, R. Patel, R. A. Ratsimandresy,
M. C. Wallin, H. Perlman, D. R. Greaves, H. M. Hoffman, A.
Dorfleutner, and C. Stehlik, “The PYRIN Domain-only Protein POP1
Inhibits Inflammasome Assembly and Ameliorates Inflammatory
Disease,” Immunity, vol. 43, no. 2, pp. 264–276, 2015.
[55] J. J. Chae, I. Aksentijevich, and D. L. Kastner, “Advances in the
understanding of familial Mediterranean fever and possibilities for
targeted therapy,” Br. J. Haematol., vol. 146, no. 5, pp. 467–478, 2009.
[56] J. C. Milne, P. D. Lambert, S. Schenk, D. P. Carney, J. J. Smith, D. J.
Gagne, L. Jin, O. Boss, R. B. Perni, C. B. Vu, J. E. Bemis, R. Xie, J. S.
Disch, P. Y. Ng, J. J. Nunes, A. V Lynch, H. Yang, H. Galonek, K.
Israelian, W. Choy, A. Iffland, S. Lavu, O. Medvedik, D. A. Sinclair, J.
M. Olefsky, M. R. Jirousek, P. J. Elliott, and C. H. Westphal, “Small
molecule activators of SIRT1 as therapeutics for the treatment of type 2
diabetes.,” Nature, vol. 450, no. 7170, pp. 712–6, 2007.
校內:2026-09-01公開