簡易檢索 / 詳目顯示

研究生: 黃士銘
Huang, Shih-Ming
論文名稱: 利用準週期性光子晶體嵌入有機太陽能電池提升其光吸收效率
Enhanced the Absorption Efficiency of Light by Embedding Quasi-Periodic Photonic Crystals to Organic Solar Cell
指導教授: 王清正
Wang, Cing-Jheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 69
中文關鍵詞: 光子晶體有機太陽能電池光吸收率
外文關鍵詞: Photonic crystal, Organic solar cells, Light absorption efficiency
相關次數: 點閱:121下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機太陽能電池(Organic solar cell, OSC)的低成本和可彎曲性已經多次被拿來和傳統矽晶電池相比,在實際的應用上面改善有機太陽能電池的低能量轉換效率是很迫切的,近年有許多研究指出轉換效率能夠藉由奈米尺寸的結構幫助光吸收率提升下進而增加能量轉換效率,其中一個提升光吸收率的方式是藉由光子晶體中的光侷限能力將光子晶體結構置入太陽能電池的吸收層中
    太陽能電池主要著重於在增強主動層的光學吸收效率,所以我們希望去優化光在吸收層中的藕合效率,因此,藉由光子晶體結構在群速度的限制上就能展示出很大的潛力在太陽能電池的發展上。
    在本文中,我們設計兩個2維準週期性光子晶體的奈米柱結構(潘洛斯晶格、阿曼-賓克晶格)然後透過有限時域差分法(FDTD)去計算其能帶結構圖,我們發現阿曼-賓克晶格所組成的光子晶體結構能夠比週期性晶格的光子晶體結構在太陽能電池的吸收層中來得有更好的光抑制能力,而阿曼-賓克晶格的光子晶體奈米柱結構在入射光波長700nm~1000nm的區段也有很明顯的光吸收效果上升。

    Organic solar cells (OSC) have various advantages compared with conventional Silicon based solar cells; for example, low cost and flexibility. However, it is necessary to improve the low conversion efficiency of power for many practical applications. There have been a number of recent studies to improve the conversion efficiency of power by increasing the light absorption with the help of nano-sized structures. One method is to use photonic crystal structures in the photoactive layer where the light absorption can be enhanced by trapping light within the photonic structures
    For solar-cell designs aimed at enhancing optical absorption in the active layer,so we hope to optimize the coupling efficiency of thelight in active layer.
    Hence,the group velocity limited by photonic crystal structures illustrates the potential applications on solar cell,
    In this paper, we design the nanorods of 2D photonic quasicrystal lattices(Penrose lattice, Ammann- Beenker lattice) and then using the finite-difference time-domain(FDTD) method to simulate the band gap maps, we find out that photonic crystal nanostructure based on ammann-beenker lattice can support more light absorption by trapping light in the absorbing layer than those in periodic lattices, and the nanorods of ammann- beenker lattice lattice has also obviously promote the light absorption from the wavelength 700 nm to 1000nm.

    摘要.......................I ABSTRACT.......................II EXTENDED ABSTRACT.......................III 致謝.......................VI 目錄.......................VII 圖目錄.......................IX 表目錄.......................XII 符號.......................XIII 第一章 緒論.......................1 1-1研究動機與背景.......................1 1-1-1 光子晶體簡介 .......................1 1-1-2 準晶體簡介.......................3 1-1-3 有機太陽能電池簡介.......................4 1-2文獻回顧.......................7 1-3本文架構.......................8 第二章 數值方法.......................9 2-1 前言.......................9 2-2 平面波展開法.......................9 2-2-1 倒晶格(Reciprocal lattice).......................9 2-2-2 布拉克理論(Bloch Theorem).......................10 2-2-3 平面波展開法 .......................11 2-2-4 正方晶格(square lattice).......................15 2-2-5 三角晶格(Triangular lattice).......................15 2-3時域有限差分法.......................21 2-3-1 時域有限差分法推導.......................21 第三章 光子晶體有機OSC的結構設計與模擬 .......................30 3-1 有機太陽能電池發電原理與基本構造.......................30 3-2 太陽光模擬.......................38 3-3 光子晶體結構設計....................... 41 3-3-1 阿基米德晶格 .......................41 3-3-2 潘洛斯晶格 .......................46 3-3-3 八重對稱晶格 .......................51 第四章光子晶體OSC的光吸收率之結果與討論....................... 54 4-1 光吸收率討論.......................54 4-2 色散曲線圖分析.......................55 4-3 光源入射角度與光吸收率分析.......................60 第五章 結論與未來展望.......................63 5-1 結論.......................63 5-2 未來展望.......................63 參考文獻.......................65

    [1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, Vol.58, No. 20, pp.2059-2062(1987)
    [2] S. John, “Strong localization of photons in certain disorded dielectric superlattices,” Physical Review Letters, Vol.58, No.20,pp.2486-2489(1987)
    [3] J. D. Jannopolous, R. D. Meade and J. N. Winn, “Photonic Crystal,” (Princeton U. Press, Princeton, N.J. (1995)
    [4] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic Phase with Long-Range Orientational Order and No Translational Symmetry. ” Phys. Rev. Lett. 53, 1951-1953 (1984)
    [5] G. Yu, and A. J. Heeger, “Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions,” J. Appl. Phys. 78(7), 4510–4515 (1995)
    [6] B.M. Kayes and H.A. Atwater, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” Journal of Applied Physics, Vol.97, 114302 (2005)
    [7] P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986-17000 (2007)
    [8] D. Duché, L. Escoubas, J.J. Simon, P. Torchio,W. Vervisch, and F. Flory, ”Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Applied Physics Letters, Vol. 92, 193310 (2008)
    [9] D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” Journal of Applied Physics. Vol. 103, 093102 (2008)
    [10] Myung-Gyu Kang, Myung-Su Kim, Jinsang Kim, L. Jay Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. 20(23), 4408–4413 (2008)
    [11] Nathan C. Lindquist, Wade A. Luhman Sang-Hyun Oh, and Russell J. Holmes; “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008)
    [12] Doo-Hyun Ko, John R. Tumbleston, Lei Zhang, Stuart Williams, Joseph M. DeSimone, Rene Lopez and Edward T. Samulski, Photonic crystal geometry for organic solar cells. Nano Letter (7):2742-2746(2009)
    [13] J ohn R. Tumbleston, Doo-Hyun Ko, Edward T. Samulski, and Rene Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers, Optics Express 17, pp. 7670 - 7681, (2009)
    [14] John R. Tumbleston, Doo-Hyun Ko, Edward T. Samulski, and Rene Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer. ” Appl. Phys. Lett. 94, 043305, (2009)
    [15] D. Duché, JJ. Simon, L. Escoubas, Ph. Torchio, J. Le Rouzo, W. Vervisch, F. Flory, “Photonic Crystals for Light Trapping within Organic Solar Cells”, IEEE Journal of Optoelectronics, Vol.7, p-p 434 – 439, (2009)
    [16] Emmanuel Drouard, Guillaume Gomard, Xianqin Meng, Ounsi El Daif,, Anne Kaminski-Cachopo, Alain Fave, Mustapha Lemiti , Christian Seassal, “Photonic Crystal Based Structures for Ultra-Thin Film Solar Cells,” IEEE transaction, p-p 945 – 953, (2010)
    [17] Sajeev John, “Light Trapping and Solar Energy Harvesting with 3D Photonic Crystals,” IEEE Photonics Journal, p-p 348 – 356, (2012)
    [18] Sakoda, “Optical Properties of Photonic Crystals,” Springer Series in Optical Sciences, Vol. 80 (2001)
    [19] K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations In Isotropic Media,” IEEE Trans. Antennas Propagat, AP-14, 802-807 (1966)
    [20] J. B. Berenger, “A PerfectlyMatchedLayer for Absorption of Electromagnetic Waves,” J. Comput. Phys. 114, 185-200 (1994)
    [21] Z. S. Sacks, D. M. Kingsland, R.Lee and J.F.Lee,“Aperfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propagat. 43, 1460-1463 (1995)
    [22] S. D. Gedney, “An anisotropic perfectly matched layer-absorbing mediumfor the truncation of FDTD lattices,” IEEE Trans. Antennas Propagat. 44, 1630-1639 (1996)
    [23] A. Taflove, Computational Electrodynamics: The Finite-Difference Time- Domain Method. Norwood, MA: Artech House (1995)
    [24] ASTM, “Reference Solar Spectral Irradiance: Air Mass 1.5 Spectra,” http://rredc.nrel.gov/solar/spectra/am1.5/
    [25] Branko Grünbaum and G.C. Shephard, “Tilings and Patterns,” New York: W. H. Freeman (1987)
    [26] S. David, A. Chelnokov, and J.-M. Lourtioz, “Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean- like tilings,” Optics Letters, Vol. 25, Issue 14, pp. 1001-1003 (2000)
    [27] A. Glassner, “Penrose Tiling.”IEEE, Computer Graphics and Applications ,vol. 18, no 14.pp 78-86,(1998)
    [28] M. Bayindir, E. Cubukcu, I. Bulu, and E. Ozbay, “Photonic band-gap effect, localization, and waveguiding in the two-dimensional Penrose lattice, ”Physical Review B, vol. 63, no. 16, pp. 161104-161101-4, (2001)
    [29] K. Wang, “Structural effects on light wave behavior in quasiperiodic regular and decagonal Penrose-tiling dielectric media: A comparative study, ”Physical Review B, vol. 76, no. 8, pp. 085107-085107-9,(2007)
    [30] Beenker FPM, “Algebric theory of non periodic tilings of the plane by two simple building blocks: a square and a rhombus, ” TH Report 82-WSK-04 (1982)
    [31] Wang N., Chen H. and Kuo K, “Two-dimensional quasicrystal with eightfold rotational symmetry,” Phys Rev Lett. 59(9) 1010-1013(1987)
    [32] T. Baba, “Slow light in photonic crystals,” Nature Photon. 2, 465 (2008)
    [33] H. Altug and J. Vučković, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Phys. Lett. 86, 111102 (2005)
    [34] H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct observation of Bloch harmonics and negative phase velocity in photonic crystal waveguides,” Phys. Rev. Lett. 94, 123901 (2005)
    [35] Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Acive control of slow light on a chip with photonic crystal waveguides,” Nature London 438,65(2005)

    下載圖示 校內:2020-07-01公開
    校外:2020-07-01公開
    QR CODE