簡易檢索 / 詳目顯示

研究生: 簡兆廷
Chen, Chao-Ting
論文名稱: 碳化時間及銅纖維含量對銅/酚醛樹脂半金屬基磨擦材料機械及磨潤性質的影響
Effects of Carbonization Time and Copper Fiber Content on Mechanical and Tribological Properties of Copper/Phenolic Resin-based Semi-metallic Friction Material
指導教授: 陳瑾惠
Chern Lin, Jiin-Huey
朱建平
Ju, Chien-Ping
李國榮
Lee, Kuo-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 140
中文關鍵詞: 磨擦材料
外文關鍵詞: friction material
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用酚醛樹脂、紅銅粉及紅銅纖維製作磨擦材料,藉由改變碳化時間及銅粉與銅纖維的相對含量,探討纖維含量對銅/酚醛樹脂基半金屬磨擦材料機械及磨潤性質的影響。研究結果概述如下:
    實驗結果發現,機械性質方面,抗壓強度隨著碳化時間增加而下降。硬度與碳化時間長短無關。
    磨潤性質方面,各類試片磨耗後的平均磨擦系數相距不大,約介於0.293與0.358,且I試片有最高的平均磨擦係數。磨耗後試片溫度隨著碳化時間增加而上升。磨耗量隨著碳化時間增加而下降。磨耗後扁面粗糙度隨著碳化時間增加而下降。
    在現性磨耗測試,可觀察出各類試片磨擦係數與磨擦次數維持穩定。甲系列試片表現出平均6000轉的磨擦係數,乙系列試片表現出最初1000轉平均磨擦係數。

    In this research, we used phenolic resin, copper powder, and copper fiber to manufacture friction material. By changing carbonization time and the relative content of copper powder and copper fiber, we understood the effects of carbonization time and copper fiber content on mechanical and tribological properties of copper/phenolic resin-based semi-metallic friction material. The results are as follows:
    The results of mechanical properties of materials show that compressive strength decrease with increasing carbonization time. Hardness is independent of carbonization time.
    Materials show little difference of average friction coefficient, about lying between 0.293 and 0.358, and I samples show the highest average friction coefficient. The friction temperature increases with increasing carbonization time. Wear loss decrease when carbonization time increases. Surface roughness decreases with increasing carbonization time and increase with increasing fiber content.
    In repeatable wear test, it shows that all specimens of average friction coefficient be stable. A group samples show average 6000 revs friction coefficient properties and F group samples show initial 1000 revs friction coefficient properties.

    摘 要 I Abstract II 誌謝 III 總目錄 IV 圖目錄 VIII 表目錄 X 第一章 前言 1 第二章 文獻回顧 2.1 磨擦材料 4 2.1.1 磨擦材料之發展 4 2.1.2磨擦材料定義 5 2.1.3 磨擦材料的應用 6 2.1.4 磨擦材料的種類 7 2.1.5磨擦材料的需求與規範 10 2.2 半金屬基磨擦材料 13 2.2.1半金屬基磨擦材料發展 13 2.2.2半金屬基磨擦材料組成物之介紹 13 2.2.3半金屬基磨擦材料製程介紹 22 2.3 複合材料機械性質 24 2.3.1複合材料定義 24 2.3.2複合材料優勢 25 2.3.3複合材料機械性質測試 25 2.4 磨潤學性質研究 28 2.4.1 磨潤學簡介 28 2.4.2 磨擦原理 28 2.4.3 影響磨擦性能的因素 29 2.4.4 磨耗機制 31 第三章 實驗方法 53 3.1 實驗原料 53 3.1.1 酚醛樹脂 53 3.1.2 紅銅粉 53 3.1.3 紅銅纖維 53 3.2 實驗製程 53 3.2.1 原料混合 54 3.2.2 熱壓成型 54 3.2.3 熱處理1 54 3.2.4 熱處理2 54 3.2.5 試片加工 55 3.3 性質量測 55 3.3.1 厚度及重量變化量測 55 3.3.2 抗壓強度測試 56 3.3.3 硬度測試 56 3.3.4 磨耗測試 57 3.3.4.1磨耗測試條件 57 3.3.4.2磨擦係數及溫度的量測 58 3.3.4.3磨耗量的量測 59 3.3.5 表面粗糙度量測 59 3.4 顯微結構分析 59 3.4.1 光學相機觀察 60 3.4.2 掃描式電子顯微鏡觀察(SEM)及能量散佈光譜儀(EDS) 60 第四章 結果與討論 73 4.1 熱處理2時間及銅纖維含量對尺寸安定性之影響 73 4.1.1 各類試片之厚度變化 73 4.1.2 各類試片之重量變化 74 4.1.3 各類試片之密度變化 75 4.2 熱處理2溫度及銅纖維含量對機械性質之影響 76 4.2.1 各類試片之抗壓強度 76 4.2.2 各類試片之硬度 77 4.3 熱處理2溫度及銅纖維含量對磨潤性質之影響 78 4.3.1 各類試片經6000 revs磨耗之磨擦曲線分布 78 4.3.2 熱處理2時間對磨擦係數之影響 79 4.3.3 銅纖維含量對磨擦係數之影響 80 4.3.4 各類試片之溫度曲線 81 4.3.5 各類試片之磨耗損失 82 4.3.6 各類試片之表面粗糙度 82 4.3.7 各類試片之表面型態 83 4.4 各類試片經6000 revs後連續磨耗測試(磨耗3次1000 revs) 85 4.4.1 各類試片平均磨擦係數 85 4.4.2 各類試片之磨耗損失 86 第五章 結論 129 第六章 參考文獻 131 圖目錄 圖2-1應用於煞車及離合器系統的磨擦材料 33 圖2-2碟式煞車示意圖 34 圖2-3鼓式煞車磨擦材料與底板 35 圖2-4鼓式煞車示意圖 35 圖2-5(a)各式磨擦材料之磨擦系數與溫度之關係圖 36 圖2-5(b)各式磨擦材料之磨耗量與溫度之關係圖 36 圖2-6煞車片磨擦金屬底板示意圖 40 圖2-7 PTFE化學結構圖 41 圖2-8 PEEK化學結構圖 41 圖2-9線性酚醛樹脂化學結構圖 42 圖2-10環氧樹脂化學結構圖 42 圖2-11矽樹脂化學結構圖 42 圖2-12(a)石墨及(b)二硫化鉬之層狀結構圖 43 圖2-13酚醛樹脂的交聯反應 44 圖2-14 0°拉伸試片尺寸圖 45 圖2-15直接端點加壓夾具示意圖 46 圖2-16直接端點加壓夾具示意圖 46 圖2-17測試厚試片用之壓縮夾具示意圖 47 圖2-18三點彎曲試驗示意圖 47 圖2-19四點彎曲試驗 48 圖2-20四點彎曲試驗示意圖 48 圖2-21(a)滾動磨擦與(b)滑動磨擦示意圖 49 圖2-22纖維排列方向示意圖 50 圖2-23磨耗機制示意圖 51 圖3-1實驗流程圖 64 圖3-2熱壓模具示意圖 65 圖3-3熱處理1升溫曲線圖 66 圖3-4熱處理2升溫曲線圖 66 圖3-5抗壓強度測試試片 67 圖3-6桌上型萬能試驗機 67 圖3-7洛氏硬度機 68 圖3-8洛氏硬度測試用鋼球壓頭 68 圖3-9磨耗試驗機外觀圖 69 圖3-10磨耗試驗機示意圖 70 圖3-11熱電偶位置示意圖 71 圖3-12表面粗糙度(Ra)測試法示意圖 72 圖4-1各製程階段的厚度值 87 圖4-2各類試片的厚度變化 87 圖4-3各製程階段的重量值 87 圖4-4各類試片的重量變化 88 圖4-5各製程階段的密度值 89 圖4-6各類列試片的密度變化 89 圖4-7各類試片的抗壓強度值 90 圖4-8各類試片的硬度值 90 圖4-9各類試片經6000 revs磨耗測試的磨擦曲線圖 91 圖4-10各類試片經6000 revs磨耗測試具代表性的磨擦曲線圖 95 圖4-11各類試片經6000 revs磨耗測試的平均磨擦係數值 99 圖4-12(a) A group試片經6000 revs磨耗測試之溫度曲線圖 99 圖4-12(b) F group系列試片經6000 revs磨耗測試之溫度曲線圖 100 圖4-13各類試片經6000 revs磨耗測試的最終溫度圖 100 圖4-14各類試片經6000 revs磨耗測試的重量損失 101 圖4-15各類試片經6000 revs磨耗測試的厚度損失 102 圖4-16各類試片經6000 revs磨耗測試的比磨耗量圖 103 圖4-17各類試片經6000 revs磨耗測試前後的表面粗糙度 104 圖4-18各類試片經6000 revs磨耗測試前後的表面型態照片 105 圖4-19各類試片經6000 revs磨耗測試前後的SEM照片 109 圖4-20 A試片磨耗前後SEM照片及元素分佈圖 113 圖4-21 B試片磨耗前後SEM照片及元素分佈圖 114 圖4-22 C試片磨耗前後SEM照片及元素分佈圖 115 圖4-23 D試片磨耗前後SEM照片及元素分佈圖 116 圖4-24 E試片磨耗前後SEM照片及元素分佈圖 117 圖4-25 F試片磨耗前後SEM照片及元素分佈圖 118 圖4-26 G試片磨耗前後SEM照片及元素分佈圖 119 圖4-27 H試片磨耗前後SEM照片及元素分佈圖 120 圖4-28 I試片磨耗前後SEM照片及元素分佈圖 121 圖4-29 J試片磨耗前後SEM照片及元素分佈圖 122 圖4-30 A試片磨擦係數與磨耗試驗次數關係圖 123 圖4-31 B試片磨擦係數與磨耗試驗次數關係圖 123 圖4-32 C試片磨擦係數與磨耗試驗次數關係圖 124 圖4-33 D試片磨擦係數與磨耗試驗次數關係圖 124 圖4-34 E試片磨擦係數與磨耗試驗次數關係圖 125 圖4-35 F試片磨擦係數與磨耗試驗次數關係圖 125 圖4-36 G試片磨擦係數與磨耗試驗次數關係圖 126 圖4-37 H試片磨擦係數與磨耗試驗次數關係圖 126 圖4-38 I試片磨擦係數與磨耗試驗次數關係圖 127 圖4-39 J試片磨擦係數與磨耗試驗次數關係圖 127 圖4-40 I試片磨擦係數與磨耗試驗次數關係圖 128 圖4-41 J試片磨擦係數與磨耗試驗次數關係圖 128 表目錄 表2-1 CNS 2586規範中溫度及磨擦係數表 36 表2-2 CNS 2586規範中溫度及磨擦係數表 37 表2-3磨擦材料熱穩定性的要求 38 表2-4 CNS 8814規範中磨擦材料接著強度表 38 表2-5石墨、二硫化鉬、氮化硼層狀結構的特性 39 表3- 1試片成分及代號表 61 表3- 2酚醛樹脂規格 62 表3- 3紅銅纖維規格 62 表3- 4對磨材灰口鑄鐵規格與性質表 63

    ASME B46.1. Surface texture, surface roughness, waviness and lay
    ASTM D695-96. Standard test method for compressive properties of rigid plastics, 1996
    Adem Kurt, Mustafa Boz,Wear behavior of organic asbestos based and bronze based powder metal brake linings, Material & Design 26(2005)717-721
    A.J.Smith, H.V.Atkinson, S.V.Hainsworth and A.C.F.Cocks, Use of a micromanipulator at high temperature in an environmental scanning electron microscope to apply force during the sintering of copper particles, Scripta Materialia 55(2006) 707-710
    Bear E., Moet A., Aglan H., High performance polymers :structure, properties, composites, fibers, Oxford University Press, New York, p14-p16, 1991
    Bijwe J., Composites as friction materials: Recent developments in non-asbestos fiber reinforced friction materials - a review, Polymer Composites 18:378-396, 1997
    Bijwe J., Rattan R., Fahim M., Abrasive wear performance of carbon fabric reinforced polyetherimide composites: Influence of content and orientation of fabric, Tribology International 40:844-854, 2007
    Bono C.M., Levine R.G., Rao J.P. Behrens F.F., Nonarticular proximal tibia fractures: Treatment options and decision making, American Academy of Orthopaedic Surgeons 9:176-186, 2001
    Burchell T.D., Carbon materials for advanced technologies, Pergamon, New York, p434, 1999
    Burris D.L. and Sawyer W.G., A low friction and ultra low wear rate PEEK/PTFE composite, Wear 261:410-418, 2006
    Chang L., Zhang Z., Ye L., Friedrich K., Tribological properties of high temperature resistant polymer composites with fine particles, Tribology International 40:1170-1178, 2007
    Cho M.H., Ju J., Kim S.J., Jang H., Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials, Wear 260:855-860, 2006
    Cho M.H., Kim S.J., Basch R.H., Fash J.W., Jang H., Tribological study of gray cast iron with automotive brake linings: The effect of rotor microstructure, Tribology International 36:537-545, 2003
    Chi-Yuan Huang,Wen-Wei Mo,Ming-Lin Roan, Studies on the influence of double-layer electroless metal deposition on the electromagnetic interference shielding effectiveness of carbon fiber / ABS composites, Surface and Coating Techology 184(2004) 163-169
    CNS 2114, Z8003. Method of Rockwell hardness test
    CNS 2472, G3038. Gray iron castings
    CNS 2586, D2002. Brake linings for automobiles
    CNS 7473, Z8022. Method of Rockwell superficial hardness test
    CNS 8813, D3122. Method of test for brake shoe assembly of motorcycles
    CNS 8814, D2129. Brake shoe assembly for motorcycles
    Dorinson A. and Ludema K. C., Mechanics and chemistry in lubrication, Elsevier Science Publishing, New York, p553, 1985

    F.E.Kennedy, A.C.Balbahadur, D.S.Lashmore, The friction and wear of Cu-based silicon carbide particulate metal matrix composites for brake applications, Wear 203-204(1997)715-721
    Feng-hua Su, Zhao-Zhu Zhang, Wei-min Liu, Mechanical and tribological properties of carbon fabric composites filled with several nano-particulates, Wear 260(2006)861-868
    Gewen Yi, Fengyuan Yan, Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers, Wear 262(2007)121-129
    Han S., Kim W.G., Yoon H.G., Moon T.J., Curing reaction of biphenyl epoxy resin with different phenolic functional hardeners, Journal of Polymer Science A: Polymer Chemistry 36:773-783, 1998
    Hayashi N., Matsui A., Takahashi S., Effect of surface topography on transferred film formation in plastic and metal sliding system, Wear 225-229:329-338, 1999
    Hirotaka Kato, Masahiro Takama, Yoshiro Iwai, Kazuo Washida, Yoshinori Sasaki, Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide, Wear 255(2003)573-578
    Hutchings I.M., Tribology: Friction and wear of engineering materials, CRC, Boca Raton, 1992
    H. Jang , K. Ko, S.J. Kim, R.H. Basch , J.W. Fash , The effect of metal fibers on the friction performance of automotive brake friction materials,Wear 256 (2004) 406–414

    H.Jang , J.S.Lee, J.W.Fash, Compositional effects of the brake friction material on creep groan phenomena, Wear 251(2001)1477-1483
    I.Mutlu, C.Oner, F.Findik, Boric acid effect in phenolic composites on tribological properties in brake linings, Materials & Design 28(2007) 480-487
    I.Mutlu, O.Eldogan, F.Findik, Tribological properties of some phenolic composites suggested for automotive brakes, Tribology International 39(2006)317-325
    Jacko M.G., Rhee S.K., Brake linings and clutch facings. In Grayson M., editor. Encyclopedia of composite materials and components, Wiley: 144-154, 1983
    Jang H., Ko K., Kim S.J., Basch R.H., Fash J.W., The effect of metal fibers on the friction performance of automotive brake friction materials, Wear 256:406-414, 2004
    J.B.Singh, W.Cai, P.Bellon, Dry sliding of Cu-15%Ni-8wt%Sn bronze:Wear behavior and microstructures, Wear 263(2007)830-841
    J.Y.Wu, Y.C.Zhou, J.Y.Wang., Tribological behavior of Ti2SnC particulate reinforced copper copper matrix composites, Materials Science Engineering A: 422(2006)266-271
    Kim S.J. and Jang H., Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp, Tribology International 33:477-484, 2000
    Kim S.J., Cho M.H., Lim D.-S., Jang H., Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material, Wear 251:1484-1491, 2001
    Kim S.J., Cho M.H., Cho K.H., Jang H., Complementary effects of solid lubricants in the automotive brake lining, Tribology International 40:15-20, 2007
    Kishore, Sampathkumaran P., Seetharamu S., Thomas P., Janardhana M., A study on the effect of the type and content of filler in epoxy-glass composite system on the friction and slide wear characteristics, Wear 259:634-641, 2005
    Kurt A. and Boz M., Wear behavior of organic asbestos based and bronze based powder metal brake linings, Materials and Design 26:717-721, 2005
    K.M.Shorowordi,A.S.M.A.Haseeb,J.P.Celis, Velocity effects on
    the wear,friction and tribochemistry of aluminum MMC sliding against phenolic brake pad,Wear256(2004)1176-1181
    K.W. Hee, P. Filip, Performance of ceramic enhanced phenolic matrix brake lining materials for automotive brake linings, Wear 259 (2005) 1088–1096
    Lee H.G., Hwang H.Y., Lee D.G., Effect of wear debris on the tribological characteristics of carbon fiber epoxy composites, Wear 261:453-459, 2006
    Li Chang, Zhong Zhang, Lin Ye ,Klaus Friedrich, Tribological properties of high temperature resistant polymer composites with fine particles, Tribology International 40(2007)1170-1178
    Louis B.Newman,F, Friction Materials Recent Advances
    Mandal D., Dutta B.K., Panigrahi S.C., Wear and friction of stir cast aluminum-base short steel fiber reinforced composites, Wear 257:654-664, 2004

    Mutlu I., Oner C., Findik F., Boric acid effect in phenolic composites on tribological properties in brake linings, Materials and Design 28:480-487, 2007
    Mumin Sahin, Cem S.Cetinarslan, H.Erol Akata, Effect of surface roughness on friction coefficients during upsetting processes for different materials, Materials and Design 28(2007) 633-640
    Min Hyung Cho, Jeong Ju, Seong Jin Kim, Ho Jang, Tribological properties of solid lubricants(graphite,Sb2S3,MoS2) for automotive brake friction materials, Wear 260(2006)855-860
    Min Hyung Cho, Seong Jin Kim, Daehwan Kim, Ho Jang, Effects of ingredients on tribological characteristics of a brake lining: an experimental case study,Wear 258 (2005) 1682–1687
    M.H.Cho, S.J.Kim, R.H.Basch, J.W.Fash, H.Jang, Tribological study of gray cast iron with automotive brake linings:The effect of rotor microstructure, Tribology International 36(2003)537-545
    Ozturk B., Arslan F., Ozturk S., Hot wear properties of ceramic and basalt fiber reinforced hybrid friction materials, Tribology International 40:37-48, 2007
    Peter Filip, Zdenek Weiss, David Rafaja, On friction layer formation in polymer matrix composites materials for brake applications, Wear 252(2002)189-198
    P.K.Deshpande,R.Y.Lin, Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity, Materials Science and Engineering A 418(2006)137-145
    R.J.Talib, A.Muchtar, C.H.Azhari., Microstructural characteristics on the surface and subsurface of semimetallic automotive friction materials during braking process, Journal of Materials Processing Technology 140:694-699,2003
    Shorowordi K.M., Haseeb A.S.M.A., Celis J.P., Velocity effects on the wear, friction and tribochemistry of aluminum MMC sliding against phenolic brake pad, Wear 256:1176-1181, 2004
    Shorowordi K.M., Haseeb A.S.M.A., Celis J.P., Tribo-surface characteristics of Al-B4C and Al-SiC composites worn under different contact pressures, Wear 261:634-641, 2006
    Stachowiak G.W., Wear:materials, mechanisms, and practice, Wiley, Chichester, p12, 2005
    Seong Jin Kim, Ho Jang,Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp,Tribology International 33 (2000) 477–484
    Shaoyang Zhang,Fuping Wang,Comparison of friction and wear performances of brake material dry sliding against two aluminum matrix composites reinforced with differnt SiC particles,Journal of Materials Processing Technology 182(2007)122-127
    Shinn-Shyong Tzeng,Fa-Yen Chang,Electrical resistivity of electroless nickel coated carbon fibers,Thin Solid Films 388 (2001) 143-149

    Shinn-Shyong Tzeng,Fa-Yen Chang,EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites,Materials science and Engineering A302(2001)258-267
    S.J. Kim, M.H. Cho, D.-S. Lim, H. Jang, Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material, Wear 251 (2001) 1484–1491
    V.A.Bely,A.I.Sviridenok,M.I.Petrokovets,V.G.Savkin, Friction and wear in polymer-based materials
    Vlastimil Matejka, Yafei Lu, Tanli Fan, Gabriela Kratosova, Jana Leskova, Effect of silicon carbide in semi-metallic brake materials on friction performance and friction layer formation, Wear 265(2008)1121-1128
    Wu J.Y., Zhou Y.C., Wang J.Y., Tribological behavior of Ti2SnC particulate reinforced copper matrix composites, Materials Science and Engineering A 422:266-271, 2006
    eovolak and bismaleimide for resin-transfer molding, J Appl Polym Sci(83):1651-1657, 2002
    Xiang Xiong , Jie Chen, Pingping Yao, Shipeng Li, Baiyun Huang, Friction and wear behaviors and mechanisms of Fe and SiO2 in Cu-based P/M friction materials, Wear 262 (2007) 1182–1186
    Xu Jincheng, Yu Hui, Xia long, Li Xiaolong, Yang Hua, Effect of some factors on the tribological properties of the short carbon fiber-reinforced copper composite, Materials and Design 25(2004) 489-493

    Yi G. and Yan F., Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers, Wear 262:121-129, 2007
    Yuji H. and Takahisa K., Effects of Cu powder, BaSO4 and cashew dust on the wear and friction characteristics of automotive brake pads, Tribology Transactions 39(2):346-353, 1996
    Yiping Tang, Hezhou Liu, Haijun Zhao,Lei Liu, Yating Wu, Friction and wear properties matrix composites reforced with short carbon fibers, Materials & Design 29(2008)257-261
    Y.S. Zhang, Z. Han, K. Wang, K. Lu, Friction and wear behaviors of nanocrystalline surface layer of pure copper, Wear 260 (2006) 942–948
    Zum Gahr K.H., Microstructure and wear of materials, Elsevier, New York, 1987.
    Limpert, 高維山譯,煞車系統設計及安全性,科技圖書,台北市,民國93年
    馬振基,高分子複合材料,國立編譯館,台北市,民國95年
    李育德,高分子導論,黎明書店,新竹,民國76年
    何淑靜,銅/酚醛樹脂基半金屬磨擦材料磨潤性質研究,國立成功大學材料科學及工程學系,台南市,民國93年
    岑尚仁,石墨、鋁及製程參數對燒結銅基磨擦材料磨潤性質影響之研究,國立成功大學材料科學及工程學系,台南市,民國92年
    許明發,郭文雄,熱塑性複合材料,黎明書店,新竹,民國93年
    行政院勞工委員會勞工安全衛生研究所,煞車來令業勞工石棉暴露防治研究,台北,民國85年
    陽春欽,磨潤學原理與應用,科技圖書股份有限公司,台北市,民國75年
    曲在綱,黃月初,粉末冶金摩擦材料
    周森,複合材料-奈米‧生物科技,全威圖書有限公司

    無法下載圖示 校內:2108-07-30公開
    校外:2108-07-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE