簡易檢索 / 詳目顯示

研究生: 李昆展
Lee, Kun-Zhan
論文名稱: 非均勻厚度壓電超音波換能器之分析模擬、製作與特性量測
Simulation, Fabrication, and Characteristic Measurement of Piezoelectric Ultrasound Transducer with Non-uniform Thickness
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 107
中文關鍵詞: 壓電陶瓷等效電路非均勻厚度有限元素法超聲波換能器非破壞性檢測
外文關鍵詞: equivalent circuit, piezoelectric ceramic, non-destructive evaluation, non-uniformthickness, ultrasound transducer, finite element method
相關次數: 點閱:68下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文研究自製之非均勻厚度PZT壓電陶瓷體,與其所製成的聚焦式超聲波換能器;研究範圍包括理論模擬、製程實作、與實驗量測。
      在理論方面採用有限元素法及等效電路模型二種方法。首先利用ANSYS有限元素法軟體進行阻抗分析,再與PSpice軟體之等效電路模擬結果作比對。Spice等效電路模型方面,採用A. Püttmer等效電路模型,將壓電材料分成聲學介質與電路端兩個部分,分別可用傳輸線與電容代替,再加上控制源估計機電轉換效應;同時參考G. Lypacewicz之Mason等效電路模型,完成非均勻厚度壓電陶瓷體等效電路模型。在製程實作與實驗量測方面,首先於實驗室中製作均勻厚度與非均勻厚度的壓電陶瓷體,以阻抗分析儀量測其頻率響應,並與模擬的結果作比對;接著以自製之壓電陶瓷體,設計製作出點聚焦的超聲波換能器,並結合聲場掃瞄系統與水聽器,以了解自製換能器的性能。實驗結果發現具有銅背層的非均勻壓電體換能器,確實能增加換能器頻寬。
      經由本文之實驗與模擬分析,證明非均勻厚度壓電陶瓷體等效電路的可行性,可以作為設計壓電超音波換能器的的依據,未來可以設計出頻寬更寬、中心頻率更高的超音波換能器,作為非破壞性檢測的應用。

      This research investigates the focusing acoustic wave transducers, which are made from PZT piezoelectric ceramic with non-uniform thickness, and their performance. The investigation covers theoretical simulation, fabrication, and experimental measurement.
      The simulation is based on finite element method (FEM) and equivalent circuit model. The piezoelectric impedance analysis has been carried out with ANSYS FEM analysis and PSpice equivalent circuit simulation. The equivalent circuit model of piezoelectric material is based on A. Püttmer’s work (1997), which consists of two parts, namely acoustic part and electric part. Both parts can be substituted by transmission lines and capacitors. Using an improve model proposed by G. Lypacewics (2002), the characteristics of a piezoelectric ceramic with non-uniform thickness is studied. The uniform and non-uniform piezoelectric ceramic disks are fabricated and measured by an impedance analyzer. The acoustic wave transducers are fabricated by those ceramics. The transducers’ properties are investigated with an acoustic field scanning system. It shows that the bandwidth of the transducer is improved with non-uniform thickness and proper backing material.
      The experimental and simulation results of this work pave a way for designing a focusing ultrasound transducer with non-uniform thickness PZT ceramics. With wider bandwidth and higher central frequency, such transducer can be very useful for future non-destructive evaluation (NDE).

    摘要 ………………………………………………………………………… I Abstract …………………………………………………………………… II 致謝 ………………………………………………………………………… III 目錄 ………………………………………………………………………… IV 表目錄 ……………………………………………………………………… VII 圖目錄 ……………………………………………………………………… VIII 符號說明 …………………………………………………………………… XIII 第一章 導論 ………………………………………………………………… 1 1-1 研究背景與目的 …………………………………………………… 1 1-2 文獻回顧 …………………………………………………………… 2 1-3 本文架構 …………………………………………………………… 4 第二章 理論基礎 …………………………………………………………… 5 2-1 彈性波在等向性及非等向性材料中的傳播行為…………………… 5 2-1-1 彈性波在等向性材料中的傳播行為 ……………………………… 7 2-1-2 彈性波在非等向性材料中的傳播行為……………………………… 8 2-2 壓電特性及壓電陶瓷之應用………………………………………… 9 2-2-1 壓電統御方程式……………………………………………………… 10 2-2-2 壓電材料重要參數…………………………………………………… 11 2-2-3 PZT壓電陶瓷的材料特性…………………………………………… 13 2-2-4 PZT超聲波換能器…………………………………………………… 14 2-3 彈性波在壓電材料中的傳播………………………………………… 15 2-4 壓電材料的等效電路………………………………………………… 17 2-4-1 等向性材料一維波傳等效模型……………………………………… 17 2-4-2 壓電材料的類比模型………………………………………………… 22 第三章 模擬 ………………………………………………………………… 28 3-1 ANSYS 模擬…………………………………………………………… 28 3-1-1 有限元素法簡介……………………………………………………… 28 3-1-2 ANSYS模擬壓電換能器……………………………………………… 29 3-2 PSpice模擬…………………………………………………………… 33 3-2-1 均勻厚度壓電片PSpice模擬………………………………………… 33 3-2-2 非均勻厚度壓電片PSpice模擬……………………………………… 37 3-3 ANSYS與PSpice模擬壓電圓盤之比較………………………………… 41 第四章 實驗與量測 …………………………………………………………… 46 4-1 PZT換能器製作………………………………………………………… 46 4-1-1 PZT壓電陶瓷製作……………………………………………………… 46 4-1-2 換能器製作……………………………………………………………… 61 4-2 PZT換能器特性量測…………………………………………………… 63 4-2-1 PZT基本特性量測……………………………………………………… 63 4-2-2 自製換能器基本特性量測……………………………………………… 73 第五章 量測結果與模擬分析 ………………………………………………… 83 5-1 自製PZT試件及換能器與模擬比較…………………………………… 83 5-1-1 自製PZT模擬…………………………………………………………… 83 5-1-2 自製PZT換能器模擬…………………………………………………… 86 5-2 平板型與非均勻厚度型換能器特性比較……………………………… 89 第六章 結論 …………………………………………………………………… 99 6-1 結論 …………………………………………………………………… 99 6-2 未來展望 ……………………………………………………………… 101 參考文獻 …………………………………………………………………………… 102 附錄A 等向性材料一維波傳等效電路………………………………………… 105 附錄B 壓電材料一維波傳等效電路……………………………………………… 106

    [1]吳朗, “電子陶瓷-壓電,”全欣圖書公司,民國83年12月。
    [2]G. Lypacewicz, A. Nowick, R. Dynowski and R.Tymkiewicz, “Wide-band Circular Ultrasonic Transducers,” Acta Acustica united with Acustica, vol.88, pp.803-806, 2002.
    [3]P. G. Barthé and P. J. Benkeser, “A Staircase Model of Tapered Piezoelectric Transducers,” IEEE Ultrason. Symp., pp. 697-700, 1987.
    [4]L. Germain, J. David and N. Cheeke, “Electronic Scanning in Ultrasonic Imaging Using a Wedge Transducer,” IEEE Trans. Utrason., Ferroelect., Freq. Contr., vol. 40, no.2, pp. 140-148, 1993.
    [5]Rupa Mitra and T. K. Saksena, “Study on the Vibrational Characteristics of Ultrasonic Transducers Using Tapered Piezoelectric Ceramic Elements,” J. Acoust. Soc. Am., vol. 101, no.1,pp. 323-329,1997.
    [6]G. Lypacewicz and E. Duriasz, “Design Principles of Transdcers with Matching Layers Based on Admittance Measurements,” ARCHIVES OF ACOUSTICS, 17, 1, pp. 117-131, 1992.
    [7]W. P. Mason, “Electromechanical Transducers and Wave Filters,” Princeton. NJ: Van Nostrand, 1948.
    [8]M. Redwood, “Transient Performance of a Piezoelectric Transducer,” J. Acoust. Soc. Am., vol. 33, pp. 527-536, 1961.
    [9]R. Krimholtz, D. A. Leedom and G. L. Matthaei, “New Equivalent Circuits for Elementary Piezoelectric Transducers,” Electron. Lett., vol. 6, no. 13, pp. 398-399, 1970.
    [10]S. A. Morris and C. G. Hutchens, “Implementation of Mason’s Model on Circuit Analysis Programs,” IEEE Trans. Utrason., Ferroelect., Freq. Contr., vol. UFFC-33, pp. 295-298, 1986.
    [11]W. Marshall Leach. Jr., “Controlled-Source Analogous Circuits and Spice Models for Piezoelectric Transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 41, no. 1, pp. 60-66, 1994.
    [12]A. Püttmer, P. Hauptmann, R. Lucklum, O. Krause and B. Henning, “SPICE Model for Lossy Piezoelectric Transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 44, no.1, pp. 60-67, 1997.
    [13]Charles S. Desilets, John D. Fraser and Gordon S. Kino, “The Design of Efficient Broad-Band Piezoelectric Transducers,” IEEE Tran. Sonics and Ultrasonics, vol. su-25, no.3, pp. 115-125, 1978.
    [14]J. Souquet, P. Defranould and J. Desbois, “Design of Low-Loss Wide-Band Ultrasonic Transducers for Noninvasive Medical Application,” IEEE Tran. Sonics and Ultrasonics, vol. su-26, no.2, pp. 75-81, 1979.
    [15]張建信, “高分子壓電薄膜的PSpice模擬應用於超聲波換能器,” 國立成功大學機械工程研究所, 民國89年。
    [16]“IEEE Standard on Piezoelectricity,” IEEE Trans. Son. Ultrason., vol. SU-31, no. 2, March 1984.
    [17]陳德一, “不同摻雜對於鈦酸鉛系列特性之影響及其應用,” 國立成功大學電機工程研究所, 民國89年。
    [18]鍾曜光, “壓電式微超音波感測器,” 國立台灣大學機械工程研究所, 民國90年。
    [19]T. Ikeda, “Fundamentals of Piezoelectricity,” Oxford University Press, 1990.
    [20]J.F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices,” Artech House, 1988.
    [21]陳精一,蔡國忠 “電腦輔助工程分析-ANSYS使用指南,”全欣圖書公司,民國89年5月。
    [22]Gordon S. Kino, “Acoustic Waves: Devices, Imaging, and Analog Signal Processing,” Prentice-Hall, 1987.
    [23]B. A. Auld, “Acoustic Fields and Waves in Solids,” John Wiley & Sons, v.1, 1973.
    [24]A. R. Selfridge, “Approximate Material Properties in Isotropic Materials,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 32, no. 3, pp. 381-394, 1985.
    [25]張元聰, “匹配層對壓電性超音波換能器特性之影響,”國立成功大學電機工程研究所, 民國86年。
    [26]趙育毅, “聚焦式超音波換能器應用於材料檢測,” 國立成功大學機械工程研究所, 民國91年。
    [27]John Keown, “MicoSim PSpice and Circuit Analysis,” 3rd edition, Prentice-Hall, 1998.
    [28]鄭群星, “電腦輔助電子電路設計-使用Spice與OrCAD PSpice,”全華科技圖書,民國91年。
    [29]Y. Kagawa and T. Yamabuchi, “Finite Element Simulation of a Composite Piezoelectric Ultrasonic Trandsducer,” IEEE Trans. Utrason., Ferroelect., Freq. Contr., vol. 26, no.2, pp. 81-88, 1979.
    [30]D. Boucher and M. Lagier, “Computation of the Vibration Modes for Piezoelectric Array Transducer using a Mixed Finite Element-Perturbation Methed,” IEEE Trans. Utrason., Ferroelect., Freq. Contr., vol. 28, no.5, pp. 318-330, 1981.

    下載圖示 校內:立即公開
    校外:2003-07-31公開
    QR CODE