簡易檢索 / 詳目顯示

研究生: 凃育新
Tu, Yu-Hsin
論文名稱: 開發使用電子病歷尋找藥物導致肝傷害個案演算法
Developing an algorithm using electronic medical record to identify people with drug-induced liver injury
指導教授: 呂宗學
Lu, Tsung-Hsueh
學位類別: 碩士
Master
系所名稱: 醫學院 - 公共衛生學系
Department of Public Health
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 128
中文關鍵詞: 藥物導致肝傷害電子病歷演算法準確度評估
外文關鍵詞: Drug-induced liver injury, Electronic Health Record, query algorithm, Roussel Uclaf Causality Assessment Method (RUCAM)
相關次數: 點閱:102下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:尋找藥物導致肝傷害個案有相當的困難度,在BC型肝炎盛行的地區,許多肝功能異常個案常會被判為BC肝炎或肝硬化導致。目前臨床藥物學會與肝臟專科醫學會都建議要以RUCAM因果關係判斷評估量表(7個面向24問題)來評估個案是否是藥物導致肝傷害。本研究目的是要評估在醫院電子病歷搜尋平台建立RUCAM查詢式演算法尋找疑似藥物導致肝傷害個案的績效。
      方法:本研究資料來源為南部一家醫療體系(含醫學中心、區域醫院、地區醫院各一)2017至2019年住院病患肝功能異常(丙胺酸轉胺超過正常值五倍或鹼性磷酯酶正常值兩倍)事件8155筆,隨機抽樣200筆,以臨床藥師人工翻閱病歷為金字標準,評估查詢式演算法的績效。遇到給分不一致者,進一步瞭解造成原因。
      結果:在200筆雙盲分析中,查詢式演算法給分<3分(不太可能)46筆,3-5分(可能)138筆,>5分(極可能)16筆;金字標準給分<3分62筆,3-5分123筆,>5分15筆。資訊演算法有16筆給3分,但是金字標準給2分,造成偽陽性。主要原因是第五面向「是否有其他非藥物導致肝傷害原因」要檢視的細項較多,查詢式演算法只有使用到結構式數據(譬如國際疾病分類編碼與數值型檢驗結果),沒有檢視影像(超音波或電腦斷層)的文字報告,因此造成錯誤給分。
      結論:本研究開發的查詢式演算法只使用結構式資料進行24個細項問題逐一判斷給分,沒有用到半結構式資料文字分析較高階程式語法。這個特色是優點也是缺點,優點是使用簡單語法,所以外推應用價值較高,沒有資訊工程師的醫院也可以複製此做法,也不需要再安裝一些程式軟體。缺點就是有一些遺漏判斷造成偽陽性,必須要再翻閱影像文字報告確認,稍微增加一些人力與時間。權衡優缺點,本查詢式演算法還是優點大於缺點,比原本人工找尋個案節省大量人力與時間。

    We developed a query algorithm based on Roussel Uclaf Causality Assessment Method (RUCAM) and applied to hospital electronic medical record data in a health care system (a medical center, a regional hospital and a district hospital) in South Taiwan to identify people with potential drug-induced liver injury (DILI) adverse drug reactions. There were 8155 events with abnormal liver function results (ALT ≥5 ULN or ALKP≥2ULN) from 2017 to 2019 and 200 events were randomly selected to assess the performance of query algorithm. The gold standard of assessment was the score given by a clinical pharmacist. The scores the query algorithms gave were <3 (unlikely) for 46 events, 3-5 (possible) for 138 events, and >5 (probable or highly probable) for 16 events. The scores the clinical pharmacist gave were <3 for 62 events, 3-5 for 123 events, and >5 for 15 events. There were 16 possible events (score 3) according to algorithm been assessed as false positive (score 2) according to clinical pharmacist. The main reason for the discrepancies came from dimension five “whether there were other non-pharmaceutical liver injury causes” and the items include the assessment of reports of image examination (abdominal echo or CT scan). In conclusion, despite the increase of some efforts to reassess the potential false positive cases, the strengths over-weighted the weaknesses. This query algorithm can efficiently identify DILI cases than traditional manual assessment.

    摘要 I 誌謝 V 目錄 VI 圖目錄 VII 表目錄 VIII 第一章 前言 1 第一節 研究背景 1 第二節 研究目的 2 第二章 文獻探討 4 第一節 藥物導致肝傷害的分類 4 第二節 藥物導致肝傷害的流行病學研究 8 第三節 藥物導致肝傷害的因果關係判斷 16 第四節 使用資訊演算法於電子病歷尋找DILI的研究 23 第三章 研究設計 38 第一節 已通報個案的病歷回顧 38 第二節 RUCAM演算法的設計 46 第三節 RUCAM演算法的驗證 57 第四章 結果 61 第一節 已通報個案的病歷回顧 61 第二節 RUCAM演算法的驗證與結果 64 第五章 討論 76 第一節 已通報個案的病歷回顧 76 第二節 RUCAM演算法的驗證與結果 78 第三節 研究強項與限制 79 第六章 結論 80 參考文獻 81 附錄 84 已通報藥物導致肝傷害個案的RUCAM評估結果 84 人體試驗委員會研究核准函 128

    中文文獻
    游佳玲、江俐慧、蔡慈貞、卓偉民。藥物性肝損傷評估量表-RUCAM。藥學雜誌。36(3):112-118, 2020.
    趙必暉、陳文雯、翁菀菲。國內藥物不良反應通報資料分析藥品引起肝傷害。台灣醫學。17(5):457-467, 2013.
    蔡至頴、郭婉如、黃薇伊、陳文雯。108年度國內上市後藥品不良反應通報案例分析。藥物安全簡訊。台北市:財團法人藥害救濟基金會。vol70:9-17, 2020.
    英文文獻
    Andrade RJ, Lucena MI, Fernández MC, et al. Drug-induced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a 10-year period. Gastroenterology. 129(2):512-521, 2005.
    Bagheri H, Michel F, Lapeyre-Mestre M, et al. Detection and incidence of drug-induced liver injuries in hospital: a prospective analysis from laboratory signals. Br J Clin Pharmacol. 50(5):479-484, 2000.
    Björnsson ES, Bergmann OM, Björnsson HK, Kvaran RB, Olafsson S. Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland. Gastroenterology. 144(7):1419-1425, 2013.
    Björnsson ES. Epidemiology, predisposing factors, and outcomes of drug-induced liver Injury. Clin Liver Dis. 24(1):1-10, 2020.
    Björnsson ES. Global Epidemiology of Drug-induced liver injury (DILI). Curr Hepatology Rep. 18:274–279, 2019.
    Chalasani N, Bonkovsky HL, Fontana R et al. Features and outcomes of 899 patients with drug-induced liver injury: The DILIN prospective study. Gastroenterology. 148(7):1340-1352, 2015.
    Cheetham TC, Lee J, Hunt CM, et al. An automated causality assessment algorithm to detect drug-induced liver injury in electronic medical record data. Pharmacoepidemiol Drug Saf. 23(6) :601-608, 2014.
    Duh MS, Walker AM, Kronlund KH Jr. Descriptive epidemiology of acute liver enzyme abnormalities in the general population of central Massachusetts. Pharmacoepidemiol Drug Saf. 8(4):275-283, 1999.
    Goldberg DS, Forde KA, Carbonari DM, et al. Population-representative incidence of drug-induced acute liver failure based on an analysis of an integrated health care system. Gastroenterology. 148(7):1353-1361, 2015.
    Hoofnagle JH, Björnsson ES. Drug-induced liver injury- types and phenotypes. N Engl J Med. 381(3):264-273, 2019.
    Jinjuvadia K, Kwan W, Fontana RJ. Searching for a needle in a haystack: use of ICD-9-CM codes in drug-induced liver injury. Am J Gastroenterol. 102(11):2437-2443, 2007.
    Kaplowitz N, Laurie D. Drug-induced liver disease 3rd Edition. United States of America: Academic Press. 287-301, 2013.
    Kang Y, Kim SH, Park SY, et al. Evaluation of drug-induced liver injury developed during hospitalization using electronic health record (EHR)-based algorithm. Allergy Asthma Immunol Res. 12(3):430-442, 2020.
    Meier Y, Cavallaro M, Roos M, et al. Incidence of drug-induced liver injury in medical inpatients. Eur J Clin Pharmacol. 61(2):135-143, 2005.
    Reuben A, Koch DG, Lee WM. Acute Liver Failure Study Group. Drug-induced acute liver failure: results of a U.S. multicenter, prospective study. Hepatology. 52(6):2065-2076, 2010.
    Sgro C, Clinard F, Ouazir K, et al. Incidence of drug-induced hepatic injuries: a French population-based study. Hepatology. 36(2):451-455, 2002.
    Suk KT, Kim DJ, Kim CH, et al. A prospective nationwide study of drug-induced liver injury in Korea. Am J Gastroenterol. 107(9):1380-1387, 2012.
    Tan EH, Low EXS, Dan YY, Tai BC. Systematic review and meta-analysis of algorithms used to identify drug-induced liver injury (DILI) in health record databases. Liver Int. 38(4):742-753, 2018.
    Teschke R. Idiosyncratic DILI: analysis of 46,266 aases assessed for causality by RUCAM and published from 2014 to early 2019. Front Pharmacol. 10:730, 2019.
    Vega M, Verma M, Beswick D, et al. The incidence of drug- and herbal and dietary supplement-induced liver injury: preliminary findings from gastroenterologist-based surveillance in the population of the state of Delaware. Drug Saf. 40(9):783-787, 2017.
    Wei G, Bergquist A, Broomé U, et al. Acute liver failure in Sweden: etiology and outcome. J Intern Med. 262(3):393-401, 2007.
    Yeboah-Korang A, Louissaint J, Tsung I, Prabhu S, Fontana RJ. Utility of a computerized ICD-10 algorithm to identify idiosyncratic drug-induced liver injury cases in the electronic medical record. Drug Saf. 43(4):371-377, 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE