| 研究生: |
吳文凱 Wu, Wen-Kai |
|---|---|
| 論文名稱: |
以熱裂解法暨火花電漿燒結製備含銅之碲硒化鉍塊材及其熱電性質之研究 Thermoelectric properties of copper decorated bismuth selenium telluride bulk prepared by pyrolysis and spark plasma sintering |
| 指導教授: |
黃啟祥
Hwang, Chii-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 碲硒化鉍 、熱裂解法 、火花電漿燒結 、熱電優值 |
| 外文關鍵詞: | bismuth selenium telluride, pyrolysis, park plasma sintering (SPS), figure of merit |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碲化物熱電材料於近期的研究方向中,主要為以奈米技術來提升碲化物的 ZT 值。此大多以高成本的方式製作具有超晶格 (super lattice) 或者具有量子點 (quantum dot) 的奈米結構薄膜,在實際應用上易受限於製程條件而難以商業化量產。因此,從量產與應用觀點來考量,以粉末冶金法 (powder metallurgy ) 製備具奈米微結構之碲化物塊材將是一個值得研究的方向。
構成一完整的熱電元件,需同時擁有 p-type 及 n-type 熱電材料。碲化鉍系列合金為低溫型熱電材料,在室溫具有良好的熱電性質。市售常見之 p-type 及 n-type 碲化鉍分別為碲化鍗鉍 (bismuth antimony telluride, (Bi, Sb)2Te3) 及碲硒化鉍 (bismuth selenium telluride, Bi2(Te, Se)3) 。其中,相較於碲化鍗鉍塊材的高熱電優值 (figure of merit , ZT) ,碲硒化鉍塊材因其高電傳導率導致較高之熱傳導率成為熱電優值長期無法突破的瓶頸。
本研究選擇 n-type 之 Bi2Te2.55Se0.45 (BTS) 作為研究主材料,旨在以熱裂解法 (pyrolysis) 暨火花電漿燒結 (spark plasma sintering, SPS) 製備散布奈米級富銅顆粒的碲硒化鉍複合塊材,探討不同銅含量對於 BTS 塊材之結晶相、微結構、電傳導特性及熱電性質的影響。
在結晶相及微結構方面,奈米富銅顆粒均勻分散於含銅之碲硒化鉍 (BTS: Cu) 塊材之中,且粒徑皆小於 100 nm 。由於銅為微量添加且均勻分散,因此 BTS: Cu 各塊材之結晶繞射訊號皆為純相 BTS 。
電傳導特性方面, BTS: Cu 各塊材在量測範圍內 (300 ~ 500 K) 皆呈現為 n-type 電傳導。銅的添加減少各塊材之載子濃度,而位於BTS 晶界之奈米富銅顆粒增加塊材之載子遷移率。各塊材之電傳導率皆為隨量測溫度之增加而減少, Seebeck 係數則是隨銅含量之增加而增加。 BTS: Cu (0.04 wt%) 塊材具有功率因子 (power factor) 之最大值,其值為 2.89 mW/mK2 。
熱傳導率方面,奈米富銅顆粒增加聲子散射界面,晶格熱傳導率因此減少。 BTS: Cu 諸試樣中,以 BTS: Cu (0.04 wt%) 塊材於 325 K 之量測溫度時,具有晶格熱傳導率的最小值 0.32 W/mK ,其值僅為未含銅之 BTS 塊材之 66 % 。 BTS: Cu (0.04 wt%) 塊材之熱電優值由於功率因子之增加及熱傳導率之減少,於 450 K 時具有整體之熱電優值最大值 0.85 ,此值相較於未含銅之 BTS 塊材增加了 25 % 。
In order to enhance the thermoelectric properties of n-type bismuth selenium telluride, copper was chosen as additives. Cu decorated Bi2Te2.55Se0.45 (BTS: Cu) powder was prepared by pulverization after zone melting, and then thermal treated with copper acetate (0.04 ~ 0.16 wt% Cu). BTS: Cu bulks were fabricated by pyrolysis and spark plasma sintering (SPS). Effect of Cu content on the thermoelectric properties of BTS: Cu bulks were investigated. The crystal structure and microstructure of bulk specimens were confirmed by XRD and SEM, respectively. The results indicate that the Cu is an effective dopant as an acceptor to optimize the carrier concentration and carrier mobility. The Seebeck coefficient increase with the increase of Cu content because of the decrease of the carrier concentration. The maximum power factor was 2.89 (mWm-1K-2) at 325 K for the BTS: Cu (0.04 wt%) bulk, which increased 26% than that of non-added sample. BST: Cu (0.04 wt%) also had the maximum figure of merit (ZT) 0.85 at 425 K.
[1] D.M. Rowe, CRC handbook of thermoelectrics, CRC press (1995).
[2] L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science, 321, 1457-1461 (2008).
[3] G.S. Nolas, J. Sharp, J. Goldsmid, Thermoelectrics: basic principles and new materials developments, Springer Science & Business Media (2013).
[4] W.S. Liu, Q. Zhang, Y. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Wang, G. Chen, Z. Ren, Thermoelectric Property Studies on Cu-Doped n-type CuxBi2Te2.7Se0.3 Nanocomposites, Advanced Energy Materials, 1, 577-587 (2011).
[5] H. Goldsmid, Recent studies of bismuth telluride and its alloys, Journal of Applied Physics, 32, 2198-2202 (1961).
[6] P. Zou, G. Xu, S. Wang, Thermoelectric Properties of Nanocrystalline Bi2(Te1−x Sex)3 Prepared by High-Pressure Sintering, Journal of Electronic Materials, 44, 1592-1598 (2014).
[7] D.M. Rowe, Thermoelectrics handbook: macro to nano, CRC press (2005).
[8] Bismuth Telluride, Material safty data sheet, ESPI Matels.
[9] M. Wagner, Simulation of Thermoelectric Devices , Dissertation, Technischen Universität Wien (2007).
[10] S. Wang, H. Li, R. Lu, G. Zheng, X. Tang, Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances, Nanotechnology, 24, 285702 (2013).
[11] M. Tokita, Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering, Materials Science Forum, Trans Tech Publication, pp. 83-88 (1999).
[12] M. Tokita, Mechanism of spark plasma sintering, Proceeding of NEDO International Symposium on Functionally Graded Materials, Japan, pp. 1-13 (1999).
[13] Q. Zhang, X. Ai, L. Wang, Y. Chang, W. Luo, W. Jiang, L. Chen, Improved Thermoelectric Performance of Silver Nanoparticles-Dispersed Bi2Te3Composites Deriving from Hierarchical Two-Phased Heterostructure, Advanced Functional Materials, 25, 966-976 (2015).
[14] J. Yang, T. Aizawa, A. Yamamoto, T. Ohta, Thermoelectric properties of n-type (Bi2Se3)x (Bi2Te3)1− x prepared by bulk mechanical alloying and hot pressing, Journal of alloys and compounds, 312, 326-330 (2000).
[15] T.S. Oh, D.B. Hyun, N. Kolomoets, Thermoelectric properties of the hot-pressed (Bi, Sb)2(Te,Se)3 alloys, Scripta materialia, 42, 849-854 (2000).
[16] J. Jiang, L. Chen, S. Bai, Q. Yao, Q. Wang, Thermoelectric properties of textured p-type (Bi, Sb)2Te3 fabricated by spark plasma sintering, Scripta Materialia, 52, 347-351 (2005).
[17] Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, Z. Ren, Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks, Nano Letters, 8, 2580-2584 (2008).
[18] F. Li, X. Huang, Z. Sun, J. Ding, J. Jiang, W. Jiang, L. Chen, Enhanced thermoelectric properties of n-type Bi2Te3-based nanocomposite fabricated by spark plasma sintering, Journal of Alloys and Compounds, 509, 4769-4773 (2011).
[19] O. Yamashita, S. Tomiyoshi, K. Makita, Bismuth telluride compounds with high thermoelectric figures of merit, Journal of Applied Physics, 93, 368 (2003).
[20] K.J. Lee, Thermoelectric Properties of n-type Bi2Te2.7Se0.3 Compounds Prepared by Spark Plasma Sintering, Metals and Materials International, 14, 433-436 (2008).
[21] S. Fan, J. Zhao, Q. Yan, J. Ma, H.H. Hng, Influence of Nanoinclusions on Thermoelectric Properties of n-Type Bi2Te3 Nanocomposites, Journal of Electronic Materials, 40, 1018-1023 (2011).
[22] M.K. Han, K. Ahn, H. Kim, J.S. Rhyee, S.J. Kim, Formation of Cu nanoparticles in layered Bi2Te3 and their effect on ZT enhancement, Journal of Materials Chemistry, 21, 11365 (2011).
[23] H. Kim, M.K. Han, C.H. Yo, W. Lee, S.J. Kim, Effects of Bi2Se3 Nanoparticle Inclusions on the Microstructure and Thermoelectric Properties of Bi2Te3-Based Nanocomposites, Journal of Electronic Materials, 41, 3411-3416 (2012).
[24] K.C. Lukas, W.S. Liu, Z.F. Ren, C.P. Opeil, Transport properties of Ni, Co, Fe, Mn doped Cu0.01Bi2Te2.7Se0.3 for thermoelectric device applications, Journal of Applied Physics, 112, 054509 (2012).
[25] S. Chen, K.F. Cai, F.Y. Li, S.Z. Shen, The Effect of Cu Addition on the System Stability and Thermoelectric Properties of Bi2Te3, Journal of Electronic Materials, 43, 1966-1971 (2013).
[26] G.E. Lee, I.H. Kim, Y.S. Lim, W.S. Seo, B.J. Choi, C.W. Hwang, Preparation and Thermoelectric Properties of Doped Bi2Te3-Bi2Se3 Solid Solutions, Journal of Electronic Materials, 43, 1650-1655 (2013).
[27] T. Zhang, J. Jiang, Y. Xiao, Y. Zhai, S. Yang, G. Xu, In situ precipitation of Te nanoparticles in p-type BiSbTe and the effect on thermoelectric performance, Applied Materials and Interfaces, 5, 3071-3074 (2013).
[28] G.E. Lee, A.Y. Eum, K.M. Song, I.H. Kim, Y.S. Lim, W.S. Seo, B.J. Choi, C.W. Hwang, Preparation and Thermoelectric Properties of n-Type Bi2Te2.7Se0.3:Dm, Journal of Electronic Materials, 44, 1579-1584 (2014).
[29] Q. Lognoné, F. Gascoin, Reactivity, stability and thermoelectric properties of n-Bi2Te3 doped with different copper amounts, Journal of Alloys and Compounds, 610, 1-5 (2014).
[30] S.J. Jung, S.Y. Park, B.K. Kim, B. Kwon, S.K. Kim, H.H. Park, D.I. Kim, J.Y. Kim, D.B. Hyun, J.S. Kim, S.H. Baek, Hardening of Bi–Te based alloys by dispersing B4C nanoparticles, Acta Materialia, 97, 68-74 (2015).
[31] J.U. Lee, D.H. Lee, B. Kwon, D.B. Hyun, S. Nahm, S.H. Baek, J.S. Kim, Effect of Sn Doping on the Thermoelectric Properties of n-type Bi2(Te, Se)3 Alloys, Journal of Electronic Materials, 44, 1926-1930 (2015).
[32] K.H. Lee, S.M. Choi, S.I. Kim, J.W. Roh, D.J. Yang, W.H. Shin, H.J. Park, K. Lee, S. Hwang, J.H. Lee, H. Mun, S.W. Kim, Doping effects on the thermoelectric properties of Cu-intercalated Bi2Te2.7Se0.3, Current Applied Physics, 15, 190-193 (2015).
[33] M.P. Lu, C.N. Liao, J.Y. Huang, H.C. Hsu, Thermoelectric Properties of Ag-Doped Bi2(Se, Te)3 Compounds: Dual Electronic Nature of Ag-Related Lattice Defects, Inorganic Chemistry, 54, 7438-7444 (2015).
[34] C.C. Lin, D. Ginting, R. Lydia, M.H. Lee, J.S. Rhyee, Thermoelectric properties and extremely low lattice thermal conductivity in p-type Bismuth Tellurides by Pb-doping and PbTe precipitation, Journal of Alloys and Compounds, 671, 538-544 (2016).
[35] ASM Metals Handbook, ASM International (1995).
[36] J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science, 321, 554-557 (2008).
[37] C. Kittel, Introduction to Solid State Physics, 8th ed., John Wiley & Sons, New York (2005).
[38] K.C. Lukas, W.S. Liu, G. Joshi, M. Zebarjadi, M.S. Dresselhaus, Z.F. Ren, G. Chen, C.P. Opeil, Experimental determination of the Lorenz number in Cu0.01Bi2Te2.7Se0.3and Bi0.88Sb0.12, Physical Review B, 85, 205410 (2012).
[39] X. Fan, Z. Rong, F. Yang, X. Cai, X. Han, G. Li, Effect of process parameters of microwave activated hot pressing on the microstructure and thermoelectric properties of Bi2Te3-based alloys, Journal of Alloys and Compounds, 630, 282-287 (2015).
[40] A. Kadhim, A. Hmood, H.A. Hassan, Effect of Se substitution on structural and electrical transport properties of Bi0.4Sb1.6Se3xTe3(1-x) hexagonal rods, Journal of Electronic Materials, 42, 1017–1023 (2013).