| 研究生: |
林彥均 Lin, Yen-Chun |
|---|---|
| 論文名稱: |
混合流況下非均質動床之數值模擬 Numerical Simulation Of Nonuniform Movable Bed In Mix Flow |
| 指導教授: |
謝正倫
Shieh, Cheng-Lun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 動床模擬 、河道輸砂 、一維輸砂模式 、底床載 、懸浮載 、沖瀉載 |
| 外文關鍵詞: | bed load, wash load, suspended load, movable bed, one-dimension sediment transportation model |
| 相關次數: | 點閱:116 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究建立一數值模式來模擬土砂運移之機制,用不同泥砂對河床沖淤變化之影響進行底床地形變動演算,並針對水工構造物之影響做討論。
模式分為水理模式、輸砂模式及底床變動模式來模擬河道泥砂輸送之情形,以二階精度顯示有限差分法Lax-Wendroff Scheme將水理方程式離散化處理,輸砂部份包含底床載、懸浮載及沖瀉載,利用輸砂公式與擴散方程式進行輸砂量之計算,再進行底床之變動演算。
其後針對模式本身進行穩定性及守恆性之分析,演算結果顯示模式之穩定性及守恆性皆能符合要求且相當合理;且模式在動床計算部份,利用一陡坡動床作為輸入條件,得到底床隨時間之變化,經分析後顯示結果合理,證明本文所開發之模式足以進行混合流況下非均質動床輸砂之模擬。
A numerical model had been finished in this research. The non-uniform sediment transportation is simulated to describe the variation of river bed.
There are three major parts in the model: hydrological model, sediment transportation model, and river-bed variation model. Hydrological model use two step Lax-Wendroff scheme to discrete the governing equation. Bed load, suspended load, and wash load are calculated in sediment model. From the result, the variation of river bed is evaluated. Besides, the effect of check dam is also considered in the model.
Furthermore, stability analysis and conservation analysis is finished, it shows the model is stable. Finally, some application shows the model could simulate lots case well.
1. 陳正炎,何智武,推移載輸砂公式通式化之初步研究,臺灣水利第42卷第1期,p25-p37。
2. 陳正炎,黃宏信,劉希昇,推移載輸砂模式之通式化研究,水保技術,3(3):132-144(2008)。
3. 蔡智恆,陳尚華,蔡長泰,懸浮載運輸對沖積河流複式斷面底床演變之影響,臺灣水利第49卷第3期,p14-p29。
4. 謝正倫,黃進坤,劉長齡,亞臨界流況下水庫淤沙特性之一維數值模擬,臺灣水利第40卷第1期,p67-p78。
5. 謝正倫,黃進坤,劉長齡,超臨界流況下水庫淤沙特性之一維數值模擬,臺灣水利第40卷第2期,p46-p55。
6. 白進忠,由懸浮載量值堆算底床載之研究,國立成功大學水利及海洋工程研究所碩士論文(2003)。
7. 吳榮瑜,遮蔽效應對混合粒徑輸砂量之影響探討,國立台灣大學生物資源暨農學院生物環境系統工程系碩士論文(2007)。
8. 李振裕,集水區水砂生產及輸送之整合研究,國立成功大學水利及海洋工程研究所碩士論文(2004)。
9. 李懷恩,深槽蜿蜒之複式斷面直渠之水理研究,國立成功大學水利及海洋工程研究所碩士論文(2007)。
10. 林建仲,土石流發生特性之初步研究,國立成功大學水利及海洋工程研究所碩士論文(2000)。
11. 林孟毅,非均勻底床坡度明渠之不恆定留之數值模擬,國立台灣大學土木工程學研究所碩士論文(2003)。
12. 翁緯明,河道砂石超載與減載運移特性之研究,國立中興大學水土保持學系碩士論文(2006)。
13. 陳俞旭,地震對崩塌與土石流發生影響之研究,國立成功大學水利及海洋工程研究所博士論文(2008)。
14. 葉正旭,山區集水區水理特性之模擬,國立成功大學水利及海洋工程研究所碩士論文(2002)。
15. 劉宗和,集集攔河堰底床沖淤與排砂之二維數值模擬之研究,國立成功大學水利及海洋工程研究所碩士論文(2006)。
16. 蔡元融,集水區土砂生產及輸送模式之研究,國立成功大學水利及海洋工程研究所碩士論文(2005)。
17. 蔡明璋,複式斷面河道一維與平面二維水理現象模擬之模擬研究,國立成功大學水利與海洋工程研究所碩士論文(2004)。
18. 謝孟荃,混合粒徑輸砂量估算之研究,國立台灣大學生物環境系統工程學研究所碩士論文(2005)。
19. 「九十七年度壽豐溪河床變化情形及治理對策」期末報告書,成大研究發展基金會。
20. 西田孝明, Shock Wave Simulations by Finite Difference Schemes, 数理解析研究所講究録 1353巻 202-213 2004年
21. 土木學會, 水理公式集, 日本, (1999).
22. 吉川秀夫, 流砂の水理學, 丸善株式會社, 日本, (1985).
23. (社)砂防学会編:山地河川における河床変動の数値計算法,pp55,(2000).
24. 中津川誠,清水康行,現場のための水理学,北海道開発局土木試験所河川研究室(1988)。
25. 芦田和男、江頭進治、中川一,21世紀の河川学,京都大学学術出版会(2008)。
26. Ackers, P. and White, W. R. “Sediment transport: new approach and analysis,” Journal of the Hydraulic Division, ASCE, Vol. 99. No. HY11, Proceeding paper 10167, 2041–2060. (1973).
27. Apsley, D.D., and Stansby, P.K. “Bed-Load Sediment Transport on Large Slopes: Model Formulation and Implementation within a RANS Solver.”Journal of Hydraulic Engineering., p1440-p1451. (2008).
28. Aricò, C., and Tucciarelli, T..“Diffusive Modeling of Aggradation and Degradation in Artificial Channels.” Journal of Hydraulic Engineering., p1079-p1088. (2008)
29. Bagnold, R. A. “Auto-suspension of transported sediment;turbidity,” Proc. Royal. Soc. London, Ser. A., Vol. 265, No. 1322,314–319. (1962).
30. Bathurst, J. C., W. H., Graf, and H. H., Cao. “Bedload Discharge Equations for Steep Mountain Rivers.” In: SedimentTransport in Gravel-Bed Rivers, John Wiley & Sons Ltd., pp.453-476. (1987).
31. Bdour, A., and Wicklein, E. “One-dimensional hydrodynamic/sediment transport model applicable to steep mountain streams.” Journal of Hydraulic Research, Vol. 00, No. 0., pp. 1–19. (2004).
32. Castro Dı′az, M.J., Ferna′ndez-Nieto, E.D., Ferreiro, A.M. “Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods.” Computers & Fluids 37., p299–p316. (2008).
33. Chen, D., and Duan, J.G. “Case Study: Two-Dimensional Model Simulation of Channel Migration Processes in West Jordan River, Utah.” Journal of hydraulic engineering., p315-p327. (2008).
34. Chen, D., and Duan, J.G. “Modeling width adjustment in meandering channels” Journal of Hydrology 321., p59–p76. (2006).
35. Cheng, N.S. “Comparison of Settling-Velocity-Based Formulas for Threshold of Sediment Motion.” Journal of Hydraulic Engineering., p1136-p1141. (2008).
36. Colby, B. R. “Practical computations of bed-material discharge,” Journal of the Hydraulics Division, ASCE, Vol. 90, No.HY2. (1964).
37. Coraci, E., Umgiesser, G., and, Zonta, R. “Hydrodynamic and sediment transport modelling in the canals of Venice (Italy).”Estuarine, Coastal and Shelf Science 75., p250-p260. (2007).
38. Cui, Y., Wooster, J.K., Venditti, J.G., Dusterhoff, S.R., Dietrich, W.E., and Sklar, L.S. “Simulating Sediment Transport in a Flume with Forced Pool-Riffle Morphology: Examinations of Two One-Dimensional Numerical Models.”Journal of hydraulic engineering., p892-p904. (2008).
39. Dey, S., and Papanicolaou, A. “Sediment Threshold under Stream Flow: A State-of-the-Art Review.”Journal of Civil Engineering ,Vol. 12, No.1.,p45-p60. (2008).
40. Duan, J.G. “Simulation of Flow and Mass Dispersion in Meandering.” Journal of Hydraulic Engineering., p964-p976. (2004).
41. Duan, J.G., and Nanda, S.K. “Two-dimensional depth-averaged model simulation of suspended sediment concentration distribution in a groyne field.” Journal of Hydrology 327., p426–p437. (2006).
42. Einstein, H. A. “The Bed-load Function for Sediment Transport in Open Channel Flows.” Tech. Bull. 1026, U.S.Department of Agriculture, Soil Conservation Service. (1950).
43. Einstein, H. A., and Chien, N. “Second approximation to the solution of suspended-load theory,” University of California, Institute of Engineering Research, No. 3. (1954).
44. Einstein, H. A., and Chien, N. “Effects of heavy sediment concentration near the bed on velocity and sediment distribution.” MRD Sediment Ser. NO. 8, Univ. of California at Berkeley, Institute of Engineering Research, Berkeley, Calif. (1955).
45. Engelund, F., and Hansen, E. “A monograph on sediment transport in alluvial streams.” Teknisk Forlag, Copenhagen. (1972).
46. Francalanci, S.,and Solari,L. “Bed-Load Transport Equation on Arbitrarily Sloping Beds.” Journal of Hydraulic Engineering., p110-p115. (2008).
47. Gao, P. “Transition between Two Bed-Load Transport Regimes: Saltation and Sheet Flow.” Journal of Hydraulic Engineering., p340-p349. (2008).
48. Greimann, B., Lai, Y., and Huang, J. “Two-Dimensional Total Sediment Load Model Equations.” Journal of Hydraulic Engineering., p1142-p1146. (2008).
49. Greimann, B., Lai, Y., and Huang, J. Two-Dimensional Total Sediment Load Model Equations, Journal of Hydraulic Engineering, p1142-p1146. (2008).
50. Hamrick, J. M. “EFDC1D: A One dimensional hydrodynamic and sediment transport model for river and stream networks, model theory,and users guide.” Technical Rep., U.S. EPA National Exposure Research Laboratory, Athens, Ga. and U.S. EPA Office of Science and Technology, Washington, D.C. (2001).
51. Holly, F. M., and Rahuel, J. L. “New numerical/physical frameworkfor mobile-bed modeling. Part 1: Numerical and physical principles.” Journal of Hydraulic Researc., 28-4.,p401–p416. (1990).
52. Hsu, M.H., Chen, C.H., and Teng, W.H.“An Arbitrary Lagrangian–Eulerian finite difference method for computations offree surface flows.” Journal of Hydraulic Engineering Research, Vol. 39, No. 5.
53. Ikeda, S., Parker, G., Sawai, K. “Bend theory of river meanders. Part 1. Linear development.” Journal of Fluid mechanic, Vol. 112., p363-p377. (1981).
54. Krishnappan, B.G. “Recent advances in basic and applied research in cohesive sediment transport in aquatic systems.” Can. J. Civ. Eng. 34: 731–743. (2007).
55. Kung, H.Y., Ku, H.H., Wu, C.I., and Lin, C.Y. “Intelligent and situation-aware pervasive system to support debris-flow disaster prediction and alerting in Taiwan.” Journal of Network and Computer Applications 31., p1–p18. (2008).
56. Lai, C. “Modeling alluviul-channel flow by multimode characteristic method.” Journal of Engineering Mechanics, Vol. 117, No. 1. (1991).
57. Langendoen, E.J., and Alonso, C.V. “Modeling the evolution of incised streams: I. model formulation and validation of flow and streambed evolution components.” Journal of Hydraulic Engineering., p749-p762. (2008).
58. Lee, H.Y., and Hsieh, H.M. “Numerical simulations of scour and deposition in a channelnetwork.” International Journal of Sediment Research, Vol. 18, No. 1. pp. 32-49. (2003).
59. Linares, M., and Belleudy, P., Critical shear stress of bimodal sediment in sand-gravel rivers, Journal of Hydraulic Engineering., p555-p559, 2007.
60. Meyer-Peter, E., and R., Müller. “Formulae for Bedload Transport.” Trans. Intern. Assoc. Hyd. Res., 2nd. Meeting,Stockholm., pp.39-65. (1948).
61. M.F.Karim ,IALLUVIAL:Analysis of sediment continuity and application to the Missouri river, IIHR Report No.292, Iowa institute of Hydraulic Research, The Univerity of Iowa, Iowa City, Iowa 52242 1985.
62. Miller, D.J., and Burnett,K.M., A probabilistic model of debris-flow delivery to stream channels, demonstrated for the Coast Range of Oregon, USA, Geomorphology 94 184–205, 2008.
63. Molinas, A., and Wu, B.S., Comparison of fractional bed-material load computation methods in sand-bed channels, Earth Surf. Process. Landforms 25, 1045-1068 (2000).
64. Molinas, A., and Yang, C. T. Computer program user's manual for GSTARS. (1986).
65. Mueller, E.N., Batalla, R.J., Garcia, C.,and Bronstert, A. “Modeling Bed-Load Rates from Fine Grain-Size Patches during Small Floods in a Gravel-Bed River.” Journal of Hydraulic Engineering., p1430-p1439. (2008).
66. Nagata, N., Hosoda, T., and Muramoto, Y. “NumerIcal analysis of river channel processes with bank erosion.” Journal of Hydraulic Engineering., p243-p252. (2000).
67. Papanicolaou, A., Bdour, A., and Wicklein, E. “A numerical model for the study of sediment transport in steep mountain streams.” J. Hydraul. Res., 42(4),357–366. (2004).
68. Papanicolaou, A.N.T., Elhakeem, M., Krallis, G., Prakash,S., and Edinger,J. Sediment Transport Modeling Review—Current and Future Developments, Journal of Hydraulic Engineering, p1-p14, 2008. (2008).
69. Parker, G., Klingeman, P. C., and McLean, D. G..“Bedload and size distribution in paved gravel-bed streams.”Journal of the Hydraulics Division, v. 108, no. HY4.,pp. 544-571. (1982).
70. Rickenmann, D. “sediment transport in Swiss torrents.” Earth Surface Processes And Landforms, Vol. 22, p937–p951. (1997).
71. Rdoriguez, J.F., Bombardelli, F.A., Garcia, M.H., Frothingham, K., Rhoads, B.L., and Abad, J.D. “High-resolution numerical simulation of flow through a highly sinuous river reach.” Water Resources Management 18: p177–p199. (2004).
72. Rouse, H. “Modern conceptions of the mechanics of turbulence,” Transaction of the ASCE, Vol. 102, 4630. (1937).
73. Rubey, W. W. “Setting velocities of gravel, sand and silt particles,” American Journal of Science, Vol. 25, 325–338. (1933).
74. She, K., Trim, L., and Pope, D.J. “Threshold of motion of natural sediment particles in oscillatory flows.” Journal of Coastal Research, Vol. 22, No. 3, p701-p709. (2006).
75. Simons, R.K., Canali, G.E., Anderson-Newton, G.T., and Cotton,G. K. “Sediment transport modeling, Calibration, Verification, and Evaluation.” Soil and Sediment Contamination, 9(3):261-289. (2000).
76. Simons D. B., and F., Sentürk. “Sediment TransportTechnology. ” Water Resources Publications Fort Collins,Colorado 80522, USA. (1977).
77. Sinnakaudan, S. K., Ghani, A. Ab, Ahmad, M. S. S., and Zakaria, N. A. “Multiple Linear Regression Model for Total Bed Material Load Prediction.” Journal of Hydraulic Engineering., p521-p528. (2006).
78. Siviglia, A., Nobile, G., and Colombini, M. “Quasi-conservative formulation of the one-dimensional Saint-Venant–Exner Model.” Journal of Hydraulic Engineering. p1521-p1526. (2008).
79. Smart, G. M. “Sediment Transport Formula for SteepChannels.” Journal of Hydraulic Engineering., ASCE, 110(3)., pp.267-276. (1984).
80. Smith, B.P.G., Naden, P.S., Leeks, G.J.L., and Wass, P.D. “The influence of storm events on fine sediment transport, erosion and deposition within a reach of the River Swale, Yorkshire, UK.” The Science of the Total Environment. p314 –p316. (2003).
81. U.S. Army Corps of Engineers HEC-6,. Scour and Depositional in Rivers and Reservoir, User's Manual. (1991).
82. Van Rijn, L.C. “Sediment transport, part I: bed loadtransport.” Journal of Hydraulic Engineering., pp. 1431-1456. (1984).
83. van Rijn, L. C. “Sediment transport, part II: suspended loadtransport,” Journal of Hydraulic Engineering, ASCE, Vol. 110, No. 11,1984, 1613–1641. (1984).
84. van Rijn, L. C. “Sediment transport, part III: bed forms and alluvial roughness,” Journal of Hydraulic Engineering, ASCE, Vol.110, No. 12, 1984, 1733–1754. (1984).
85. Wang, G., Fu, X., Huang, Y., and Huang, G. “Analysis of Suspended Sediment Transport in Open-Channel Flows: Kinetic-Model-Based Simulation.” Journal of Hydraulic Engineering., p328-p339. (2008).
86. Wright, S., and Parker, G. “Density stratification effects in sand-bed rivers,” Journal of Hydraulic Engineering, ASCE, Vol. 130,No. 8, 2004, 783–795. (2004).
87. Wu, B., Molinas, A.,and Julien, P.Y. “Bed-Material Load Computations for Nonuniform Sediments.” Journal of Hydraulic Engineering. p1002-p1012. (2004).
88. Wu, W., Vieira, D.A., and Wang, S.S.Y. “One-dimensional numerical model for nonuniform sediment transport under unsteady flows in channel networks.” Journal of Hydraulic Engineering. p914-p923, (2004).
89. Yalin, M. S., and E., Karahan. “Inception of Sediment Transport.” Journal of Hydraulic Engineering., ASCE, 105(11)., pp.1433-1443. (1979).
90. Yang, C. T. “Incipient motion and sediment transport,” Journal of the Hydraulics Division, ASCE, Vol. 99, No. HY10, Proceeding Paper 10067, 1679–1704. (1973).
91. Yang, C. T. “ Unit Stream Power Equation for Gravel.” Journal of Hydraulic Engineering., ASCE, 110(12)., pp.1783-1798. (1984).
92. Prosser, I., Rustomji, P. Young, B., Moran, C., and Hughes, A.“Constructing river Basin Sediment Budget for the National Land and Water Resource aduit.”
93. DeHaan,H.C., Large River Sediment Transport and Deposition: An Annotated Bibliography, Long Term Resource Monitoring Program Technical Report 98-T002.
94. Chang, H.H.,FLUVIAL-12 Mathematical Model for Erodible Channels, Users Manual.
95. Hamrick, J.M., and Hayter, E.J. “EFDC1D - A One Dimensional Hydrodynamic and Sediment Transport Model for River and Stream Networks: Model Theory and Users Guide.” EPA/600/R-01/073, September. (2001).
96. Karim, M.F., IALLUVIAL2 A Computer Program for Water and Sediment Routing in Alluvial Channels, US Army Corps of Engineers Hydrologic Engineering Center.
97. MIKE 11- a Modeling System for Rivers and Channels, DHI, April (2003).
98. US Army Corps of Engineers Hydrologic Engineering Center, Hydraulic Reference manual.
99. Yang, C.T., and Simões, F.J.M., GSTARS 3.0: A Numerical Model for Reservoir Sedimentation.