簡易檢索 / 詳目顯示

研究生: 鍾怡寧
Chung, Yi-Ning
論文名稱: 利用SMAIT及質譜法鑑定DPHP與DINCH塑化劑代謝物作為暴露指標
Metabolite identification of DPHP and DINCH for exposure marker discovery by signal mining algorithm with isotope tracing (SMAIT) and mass spectrometry
指導教授: 廖寶琦
Liao, Pao-Chi
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 63
中文關鍵詞: DPHPDINCH代謝物暴露指標SMAIT
外文關鍵詞: DPHP, DINCH, Metabolite, Exposure marker, SMAIT
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • DPHP 和DINCH為DEHP與DINP的替代性塑化劑。DPHP 及DINCH使用量逐漸增加,這也提高了一般民眾暴露的可能性,而利用量測尿液中DPHP及DINCH的代謝物訊號可以評估DPHP及DINCH暴露的情形。因此本研究目的為利用高解析質譜儀及實驗室所開發的同位素標定追蹤方法(SMAIT)找尋體外培養樣本中DPHP及DINCH代謝物訊號,並用動物實驗驗證為暴露指標。樣本經由人類肝臟酵素進行24小時反應,以固相萃取裝置進行樣品淨化,接著以液相層析質譜儀進行樣品分析,分析時分別以負離子及正離子模式掃描,產生的質譜數據以SMAIT進行訊號篩選,在負離子模式分析中篩選出12個DPHP與18個DINCH可能的代謝物訊號,在正離子模式中篩選出5個DPHP與8個DINCH可能的代謝物訊號。接著,利用動物實驗進行代謝物之驗證,將老鼠分為7組,每組3隻,分別暴露7種不同劑量之DPHP與DINCH(0、75、150、300、600、1200、2400 mg/kg body weight),收取暴露後24小時尿液,以固相萃取進行尿液樣本淨化,接著以高解析質譜儀進行分析。動物實驗之驗證結果,15個DPHP (負離子模式11個、正離子模式4個)與16個DINCH (負離子模式9個、正離子模式7個)代謝物訊號可以在老鼠尿液中被量測到,且代謝物訊號強度與暴露劑量呈正相關(r ≥ 0.7, p ≤ 0.001)。將SMAIT與其他找尋代謝物之方法進行比較,雖然SMAIT篩選得到之代謝物訊號數量較少,但是經過動物實驗驗證結果,SMAIT在篩選代謝物的效益較好。結果顯示,經由SMAIT篩選並經過動物實驗所驗證所得到的15個DPHP及16個DINCH代謝物,可作為DPHP與DINCH暴露評估的指標。

    Di-2(propylheptyl) phthalate (DPHP) and di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) are substitutes for some phthalates like di-(2-ethylhexyl) phthalate (DEHP) and di-iso-nonyl-phthalate (DINP). The increase of DPHP and DINCH consumption suggests a possible exposure of the general population. Exposure of DPHP and DINCH can be estimated by measuring concentration of metabolites. The aim of this study is to identify biological markers of DPHP and DINCH exposure by using high resolution mass spectrometry (HRMS) and signal mining algorithm with isotope tracing (SMAIT) in the in vitro samples, and validate the exposure-related markers in a rat model. In vitro DPHP and DINCH incubation samples wew incubated with human liver enzyme (S9 fraction) for 24 hours, and solid phase extraction (SPE) was used to clean up and condense those samples. Those samples were analyzed by HRMS, and the SMAIT program was used to identify metabolite marker candidates from the HRMS data. The 12 DPHP and 18 DINCH metabolite marker candidates in negative ion mode and 5 DPHP and 8 DINCH candidates in positive ion mode were identified by using SMAIT, and validated by rat model. The rats were divided into seven groups (N=3), and the 24-hour urine were collected after the rats orally administerated with different dose (0, 75, 150, 300, 600, 1200, 2400 mg/kg body weight). The results of rat model showed that the intensity of 15 DPHP (11 in negative and 5 in positive) and 16 DINCH (9 in negative and 8 in positive) metabolite candidates were positively correlated with increasing administrated dose (r ≥ 0.7, p ≤ 0.001). The more metabolite candidates can be identified by Mass Defect Filter (324 DPHP and 299 DINCH) than SMAIT. Nevertheless, the efficiency of identify exposure markers in SMAIT (92% for DPHP and 50% for DINCH) was better than MDF (7% for DPHP and DINCH). The result suggested that the 15 DPHP and 16 DINCH metabolite signals can be used as exposure markers of DPHP and DINCH.

    摘要 ..................................................... II Abstract ................................................ III 致謝 ..................................................... IV List of Tables ........................................... VI List of Figures .......................................... VI Abbreviation ........................................... VIII Chapter 1. Overview of the literatures .................... 1 1-1 Di(2-propylheptyl) phthalate ......................... 1 1-1-1 The usage of DPHP .................................. 2 1-1-2 The toxicity of DPHP ............................... 3 1-2 Di(isononyl) cyclohexane-1,2-dicarboxylate............. 3 1-2-1 The usage of DINCH ................................. 4 1-2-2 The toxicity of DINCH ............................. 4 1-3 Plasticizer metabolic pathway ........................ 4 1-4 The strategies of metabolism searching ................ 7 1-4-1 Signal mining algorithm with isotope tracing (SMAIT) 7 1-4-2 Mass Defect Filter (MDF) ........................... 7 Chapter 2. Objectives .................................... 8 Chapter 3. Materials and methods ......................... 9 3-1 Research scheme........................................ 9 3-2 Research materials and methods........................ 11 3-2-1 Standards synthesis and compound purity assessment . 11 3-2-2 Test of the enzyme incubation time ................ 11 3-2-3 DPHP and DINCH in vitro experiment ................ 13 3-2-4 High resolution liquid chromatography mass spectrometry analysis ................................................. 16 3-2-5 SMAIT instructions ................................ 17 3-2-6 In vivo rat urine collection and pretreatment ..... 20 3-2-7 The rat urine analyst by ultra-high performance liquid chromatography high resolution mass spectrometry (UPLC-HRMS) 21 Chapter 4. Results and discussion ....................... 23 4-1 Purity of synthesized D4-di-(2-propylheptyl) phthalate and D4- diisononyl 1,2-cyclohexanedicarboxylic acid .......... 23 4-2 Test of the human liver enzyme activity in three different time periods ............................................. 26 4-3 Identification of metabolite marker candidates by using SMAIT .................................................... 28 4-3-1 DPHP .............................................. 28 4-3-2 DINCH .............................................. 31 4-4 Validation of metabolite marker candidates from SMAIT identification ........................................... 34 4-4-1 DPHP .............................................. 34 4-4-2 DINCH .............................................. 44 4-5 Comparison the results of different metabolites searching strategies ................................................ 56 Chapter 5. Conclusion ................................... 57 References ............................................... 59 Appendix .................................................. 61

    Leng G, Koch HM, Gries W, Schütze A, Langsch A, Brüning T, Otter R.. 2014. Urinary metabolite excretion after oral dosage of bis(2-propylheptyl) phthalate (DPHP) to five male volunteers - Characterization of suitable biomarkers for human. Toxicology Letters 231:282-288

    A.Schütze, W. Gries, M. Kolossa-Gehring, P. Apel, C. Schröter-Kermani, U. Fiddicke, G. Leng, T. Brüning, H. M. Koch., 2015. Bis(2-propylheptyl)phthalate (DPHP) metabolite emerging in 24h urine samples from the German Environmental Specimen Bank (1999-2012). International Journal of Hygiene and Environmental Health. 218:559-563

    Bizzari, S.N., Blagoev. M., Kishi. A.,2013. Chemical economics handbook plasticizers.

    M. Wittassek, J. Angerer.. 2008. Phthalate: metabolism and exposure. Int. J. Androl., 31:131-138

    Kasper-Sonnenberg M, Koch HM, Wittsiepe J, Wilhelm M.. 2012. Levels of phthalate metabolites in urine among mother– child - pairs – Results from the Duisburg birth cohort study, Germany. International Journal of Hygiene and Environmental Health. 215: 373-382

    National industrial chemicals notification and assessment scheme (NICNAS), 2003. Full public report, 1,2-benzenedicarboxylic acid, bis(2-propylheptyl) ester, (Palatinol 10-P)

    Wolfgang Gries, Dietmar Ellrich, Katja Küpper, Birgit Ladermann, Gabriele Leng, 2012. Analytical method for the sensitive determination of major di-(2-propylheptyl)-phthalate metabolites in human urine. Journal of Chromatography B. 908:128-136

    Thuy T.Bui, Georgios Giovanoulis, Anna Palm Cousins, Jörgen Magnér, Ian T.Cousins, Cynthia A.de Wit. 2016. Human exposure, hazard and risk of alternative plasticizers to phthalate esters. Science of the total environment 541:451-467

    Virunya S. Bhat, Jennifer L. Durham, J. Caroline English. 2014. Regilatory Toxicology and Pharmacology. 70:65-74

    EFSA, Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contract with Food (AFC) on a request related to a 12th list of substances for food contact materials., 1-21

    A.Schütze, M. Lorber, K. Gawrych, M. Kolossa-Gehring, P. Apel, T. Brüning, H. M. Koch., 2015. Development of a multi-compartment pharmacokinetc model to characterize the exposure to Hexamoll® DINCH®. Chemosphere. 128:216-224

    EFSA, 2006. European Food Safety Authority: opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request related to a 12th list of substances for food contact materials. EFSA J. 395-401

    Hsu JF, Peng LW, Li YJ, Lin LC, Liao PC. 2011. Identification of di-isononyl phthalate metabolites for exposure marker discovery using in vitro/in vivo metabolism and signal mining strategy with lc-ms data. Analytical chemistry

    Lin LC, Wu HY, Tseng VS, Chen LC, Chang YC, Liao PC. 2010. A statistical procedure to selectively detect metabolite signals in lc-ms data based on using variable isotope ratios. Journal of the American Society for Mass Spectrometry 21:232-241.

    Zhong PL, Michael G. Ikonomou, Hongwu Jing, Cheryl Mackintosh, Frank A. P. C. Gobas. 2003. Determination of Phthalate Ester Congeners and Mixtures by LC/ESI-MS in Sediments and Biota of an Urbanized Marine Inlet. Environ. Sci. Technol 37:2100-2108

    Saravanabhavan G, Murray J. Human biological monitoring of diisononyl phthalate and diisodecyl phthalate: A review. Journal of environmental and public health 2012:810501.

    Wormuth M, Scheringer M, Vollenweider M, Hungerbuhler K. 2006. What are the sources of exposure to eight frequently used phthalic acid esters in europeans? Risk Anal 26:803-824.

    Zhang H, Zhang D, Ray K, Zhu M. 2009. Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry. J Mass Spectrom 44:999-1016.

    Zhang HY, Zhang DL, Ray K. 2003. A software filter to remove interference ions from drug metabolites in accurate mass liquid chromatography/mass spectrometric analyses. J Mass Spectrom 38:1110-1112.

    Zhu MS, Zhang HY, Humphreys WG. 2011. Drug metabolite profiling and identification by high-resolution mass spectrometry. J Biol Chem 286:25419-25425.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE