| 研究生: |
洪榮祥 Hung, Jung-Hsiang |
|---|---|
| 論文名稱: |
加勁邊坡動態行為之模擬分析 Simulation Analysis on Dynamic Behavior of Reinforced Slope |
| 指導教授: |
陳景文
Chen, Jing-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 加勁邊坡土體 、降伏速度 、二維有限差分軟體 、振動台試驗 |
| 外文關鍵詞: | Yielding Rate, Shaking Table Test, FLAC, Reinforced Slopes |
| 相關次數: | 點閱:96 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用二維有限差分軟體 FLAC (Fast Largragian Analysis of Continua)建立數值模型,以華盛頓大學Perez(1999)所做之振動台試驗進行動態行為之模擬,模型中使用Duncan(1980)提出的雙曲線土壤模數模型修正不同圍壓下的土壤模數,並利用Rankine靜止土壓力對砂箱與土壤間之側向摩擦力進行折減;並於底面先鋪上一層砂土後,再鋪設底層加勁材,減低底層加勁材在底面上產生的滑動現象。
模擬結果與振動台試驗量測到之坡面位移、土體變位等進行比對,確定模型可成功模擬之後,再針對各種加勁邊坡內各種設計因子進行參數分析,探討在各種不同參數下,對坡面變形及內部土體應力狀態之影響,藉以更進一步了解加勁邊坡之動態行為。
結果發現,加勁邊坡越弱,則土體之破壞面越接近牆底之位置,且破壞面與水平的角度越大;加勁邊坡之坡面最大變位會隨著加勁材強度及加勁材埋設長度增加而減小;加勁邊坡之降伏加速度則隨著加勁材強度及加勁材埋設長度增加而增加。
The study has used two dimensional finite difference software FLAC (Fast Largragian Analysis of Continua) to build a numerical model; the simulation based on Perez's "Shaking Table Tests" which established by Adam Perez (1999) in University of Washington. The hyperbolic soil model which established by Duncan (1980) is used to modify the soil modulus under different confined compressions. This model also decreased the compressions between the sand box and the soil by using Rankine’s theory. To prevent sliding, we place a sand layer as the bottom layer.
Comparing the results of the simulation and the shaking table test, we found that this model can successfully simulate the project. To further understanding the dynamic behavior of reinforced slopes, we analysis various design factors in the reinforced slopes; explore the effect from the different parameters, slope deformation and internal soil stress.
The results of the study indicate that the weaker slopes are closer between the soil's yieldind layer and the bottom of the wall get, and if the embedment length and the stiffness of the reinforcement are longer or stronger, the reduction of deformation of the wall face will be more effective. It also found that the yielding rate of the reinforced slopes increase as the strength of the reinforment and the embedded length increases.
1. 中華地工材料協會,加勁擋土結構設計及施工手冊,中華地工材料協會,(2001)。
2. 賴盈如,「加勁邊坡動態反應分析」,國立台灣海洋大學河海工程學系碩士論文,(2002)。
3. 周南山,「地工合成物加勁坡分析設計之探討與評估」,地工技術,第43期,第32-42頁,(1993)。
4. 江鑑清,「疊塊式加勁邊坡之靜動態行為分析」,國立台灣海洋大學河海工程學系碩士論文,(2002)。
5. 陳建吾,「加勁擋土牆動態行為之模擬」,國立成功大學土木工程研究所碩士論文,(2004) 。
6. 蔡浻祥,「加勁邊坡動態行為模擬之分析」,國立成功大學土木工程研究所碩士論文,(2005) 。
7. 王鴻圖,「加勁邊坡土體動態行為之模擬分析」,國立成功大學土木工程研究所碩士論文,(2006) 。
8. 張達德、顏呈仰,「地工格網於砂土圍壓下拉出行為研究」,私立中原大學碩士論文,(1998)。
9. 「中國建築史第一冊」,中國建築史編輯委員會編成(1962)。
10.「中國大百科全書-土木工程」,北京,中國大百科全書出版社,中國大百科全書編輯委員會-土木工程編輯委員會(1987)。
11. Anderson, E.A. “A Centrifuge Modeling Study of Seismic Response of geosynthetic-reinforced Slopes,” Master of Science Thesis, University of Washington, (1997).
12. Bathurst, R.J. and Koerner R.M., “Results of Class A Predictions for the RMC Reinforced Soil Wall Trials,” The Application of Polymeric Reinforcement in Soil Retaining Structures, P.M. Jarrett and A. McGown, Eds., NATO ASI Series, Series E: Applied Sciences – Vol. 147, Kluwer Academic Publishers, Boston, pp. 127-171, (1988).
13. Bathurst, R.J. and Hatami, K., “Seismic Response Analysis of a Geogrid-Reinforced Soil Retaining Wall”, Geosynthetics International, Vol.5, No.1-2, pp.127-166, (1998).
14. Bassett, R.H. and Last, H.C., “Reinforced Earth Below Footings and Embankments,” Proceeding, Symposium on Reinforced Earth, ASCE, Pittsburgh, pp. 222-331, (1978).
15. Bergado D.T., Chai J.C. and Balasubramanism A.S., “Interactionbetween Grid Reinforcement and cohesive-frictional Soil”, Proceedingsof the International Symposium on Earth Reinforcement Practice,Kyushu University, Fukuoka, Japan, pp. 29-34 (1992).
16. Bonaparte, R., Holtz, R.D., and Giroud, J.P., (1987) “Soil Reinforcement Design Using Geotextiles and Geogrids”, Geotextile Testing and the Desing Engineer, ASTM STP 952, J. E. Fluet, Jr., Ed.,American Society for Testing and Materials, Philadelphia, pp. 69-116.
17. Burgess, G.P., “Two Full-Scale Model Geosynthetic-Reinforced Segmental Retaining Walls,” Master of Science Thesis, Royal Military College of Canada, Kingston, (1999).
18. Duncan, J.M., Byrne, P., Wong, K.S. and Mabry, P. “Strength, Stress-Strain and Bulk Modulus Parameters for Finite Element Analyses of Stresses and Movements in Soil Masses,” Geotechnical Engineering Report, No. UCB/GT/80-01, University of California, Berkeley, (1980).
19. Gray, D.H. and Ohashi, H., “Mechanics of Fiber Reinforcement in Sand,” Journal of Geotechnical Engineering, ASCE, Vol. 109, No. 3, pp. 335-353, (1983).
20. Hausmann, M.R. “Strength of Reinforced Soil,” Proceeding of Eighth Australian Road Research Board Conference, Perth, Session 13, pp. 1-3, (1976).
21. Hausmann, M.R., and Lee, K.L., “Strength Characteristics of Reinforced Soil,” Proceedings of the International Symposium on New Horizons in Construction Materials, Lehigh, Vol. 1, pp. 165-176, (1976).
22. Hausmann, M.R., Engineering Principles of Ground Modification, McGraw-Hill, (1990).
23. Itasca Consulting Group, Fast Lagrangian Analysis of Continua, Itasca Consulting Group, Inc.Volume I, II, III, IV, (1999).
24. Jones, C. J.F.P., Earth Reinforcement and Soil Structures, Thomas Telford, (1997).
25. Krizhner, F. and Rosenhouse, G., “Numerical Analysis of Tunnel Dynamic Response to Earth Motions,” Tunneling and Underground Space Technology, Vol. 15, No. 3, pp. 249-258, (2000).
26. Lade, P.V. and Lee, K.L., “Engineering Properties of Soils,” Report UCLA-ENG-7652, pp. 145, (1976).
27. Lee, W.F., “Internal Stability Analyses of Geosynthetic Reinforced Retaining Walls,” Ph.D. dissertation, Department of Civil and Environmental Engineering, University of Washington, (2000).
28. Lindquist, D.D., “Seismic Modeling of Geosynthetic Reinforced Slopes,” Master of Science Thesis, Department of Civil and Environmental Engineering, University of Washington, Seattle, (1998).
29. Matsuo, O., Tsutsumi, K., Yokoyama, K. and Saito, Y., “Shaking Table Tests and Analyses of Geosynthetic-Reinforced Soil Retaining Wall,” Geosynthetic International, Vol 5, Nos. 1-2, pp. 97-126, (1998).
30. McElroy, J.A. “Seismic stability of geosynthetic reinforced slopes: a shaking table study,” Master of Science of Thesis, University of Washington, (1997).
31. Mitchell, J.K. and Villet, W.C.B., “Reinforcement of Earth Slopes and Embankments,” National Cooperative Highway Research Program Report 290, Transportation Research Board, 323 p., (1987).
32. NCMA, “Segmental Retaining Walls – Seismic Design Manual”, 1st Edition, National Concrete Masonry Association, Bathurst, R. J., USA, (1998).
33. Nova-Roessig, L., “Centrifuge studies of the seismic performance of reinforced soil structures,” Ph.D. Dissertation, University of California, Berkeley, p. 233, (1999).
34. Perez, A., “Seismic Response of Geosynthetic Reinforced Steep Slopes,” Master of Science Thesis, University of Washington, (1999).
35. Richardson, G.N. and Lee, K.L., “Seismic Design of Reinforced Earth Walls”, Journal of Geotechnical Engineering, ASCE, Vol. 101, pp. 167-188, (1975).
36. Rowe, R.K. and Ho, S.K., “Application of Finite Element Techniques to the Analysis of Reinforced Soil Walls,” The Application of Polymeric Reinforcement in Soil Retaining Structures, P.M. Jarrett and A. McGown, Eds., NATO ASI Series, Series E: applied Sciences – Vol. 147, Kluwer Academic Publishers, Boston, pp. 541-556, (1988).
37. Rowe, R. K. and Ho, S. K., “Keynote Lecture: A Review of the Behavior of Reinforced Soil Walls,” Earth Reinforcement Practice, Proceedings of the International Symposium on Earth Reinforcement Practice, Fukuoka, H. Ochiai, S. Hayashi and J. Otani, Eds., Balkema, Rotterdam, pp. 801-830, (1993).
38. Sakaguchi, M., Muramatsu, M. and Nagura, K., “A Discussion on Reinforced Embankment Structures Having High Earthquake Resistance”, Proceeding of the International Symposium on Earth Reinforcement, Fukuoka, Japan, pp. 287-292, (1992).
39. Sakaguchi, M., “Study of the Seismic Behavior of Geosynthetic Reinforced walls in Japan,” Geosynthetics International, Volume 3, No. 1, pp. 13-30, (1996).
40. Schlosser, F. and Long, H.T., “Recent Results in French Research on Reinforced Earth,” Journal of the Construction Division, ASCE, Vol. 100, No. CO3, pp. 223-227, (1972).
41. Seed, H.B. and Whitman, R.V., “Design of Earth Retaining Structures for Dynamic Loads,” ASCE Specialty Conference: Lateral Stresses in the Ground and Design of Earth Retaining Structures, Ithaca, NY, pp. 103-147, (1970).
42. Vidal, H., “The Principle of Reinforced Earth,” Highway Research Record 282, pp. 1-16, (1969).
43. Yang, M.A. and Singh, A., “Strength and Deformation Characteristics of Reinforced Sand,” National Meeting on Water Resources Engineering, ASCE, Los Angeles, Preprint 2189, (1974).