簡易檢索 / 詳目顯示

研究生: 方璽
Fang, Xi
論文名稱: 臺灣河川流量間歇性特徵分析
Analysis of the Intermittent Characteristics of Streamflow in Taiwan
指導教授: 葉信富
Yeh, Hsin-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 84
中文關鍵詞: 河川間歇性集水區屬性主成分分析乾旱指標臺灣河川
外文關鍵詞: River Intermittency, Catchment Attributes, Principal Component Analysis, Drought Index, Taiwan Rivers
相關次數: 點閱:67下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 考量因氣候變遷導致河川流量停止流動的頻率增加,並造成水資源與生態的危害,有必要針對河川流量的間歇性進行分析。間歇性是指河流會週期性停止流動或乾涸,在全球範圍普遍存在。由於臺灣的降雨分布不均、河流長度短且山坡陡峭,使河流容易在暴雨時出現洪水並在長期沒有降雨時出現斷流現象。因此,需要辨識出主導臺灣河流發生間歇性的特徵。本研究對全臺灣從1960至2022年的65個流量測站資料,分別使用間歇率(Intermittency Ratio, IR) 、Richards-Baker Flashiness(RBF) Index、乾季六個月的季節性(Six-month Seasonality of Dry periods, SD6)與方向統計,說明流量間歇性、變化性與季節性並對上述水文指標執行趨勢分析說明隨時間的趨勢,用來了解臺灣的河流現況與時空變化。另外,進一步對集水區屬性使用主成分分析(Principal Component Analysis, PCA),確認主導集水區差異的環境變數,並與氣候數據、乾旱指標進行相關性分析,確認間歇性與上述指數的關聯性,說明時間與空間上主導間歇性發生變化的特徵。
    本研究的結果顯示,臺灣的河流屬於弱間歇性(0 < IR ≤ 0.5),流量變化範圍小,大多的低流事件集中於冬季時期發生,並且主要發生在1月至3月份。東部集水區的低流天數占比會隨著時間增加,但季節性不隨時間變化。延長冬季六個月的間歇性特徵分析,顯示出具有較大間歇性之集水區主要發生在土壤含水量較少、潛勢蒸發散較大或滲透率較大之區域。在氣候相關性結果顯示,臺灣的間歇性與未降雨的頻率(L1mm)呈顯著相關,代表未降雨導致低流事件發生。在乾旱的相關性結果顯示,間歇性的大小能夠說明乾旱的嚴重程度,並且能代表水文乾旱。本研究提供各個河流的間歇性分析結果與冬季間歇性的主要影響因子,可為河川及水資源管理提供參考。

    Considering the climate change that increases the frequency of river flow stops and causes harm to water resources and ecosystems, analyzing the river intermittency is necessary. Intermittent rivers are rivers which periodically stop flowing or dry up, are common worldwide. In Taiwan, uneven rainfall distribution, short river lengths and steep slopes cause rivers to experience flooding during heavy rainfalls and stop flowing during long periods of non-rainfall. Therefore, identifying the characteristics of driving river intermittency in Taiwan is necessary. This study aimed to analyze the spatiotemporal variations in river conditions across Taiwan using the Intermittency Ratio (IR), Richards-Baker Flashiness (RBF) Index, Six-month Seasonality of Dry periods (SD6) and directional statistics to indicate river intermittency, variability and seasonality. The analysis was based on streamflow data from 65 gauging stations covering the period from 1960 to 2022. Trend analysis was conducted to illustrate temporal changes in the selected hydrological indicators. Principal Component Analysis (PCA) was applied to catchment attributes to identify dominant variables influencing catchment differences. Correlation analysis was performed with the climate data and drought indicators to identify the correlation between the intermittency and the above indicators, and to illustrate the temporal and spatial characteristics driving intermittency changes. The results show that the rivers in Taiwan have weak intermittency (0 < IR ≤ 0.5) with small flow variability, and most of the low flow events are concentrated in the winter period and occur between January and March. The ratio of low flow days has increased over time in catchments at east of the Central Mountain Range, but seasonality remained unchanged over time. Characterization of intermittency during the six-month winter period indicates that higher intermittency occurs in catchments with lower soil moisture, higher potential evapotranspiration or higher permeability. Climate correlation analysis shows that the significant relationship between intermittency and the frequency of rainless rainfall (L1mm), indicating that lack of rainfall causes low flow events. Drought correlation analysis shows that intermittency magnitude reflects drought severity and serves as a strong indicator of hydrological drought. This study provides the results of intermittency analysis and identifies the main factors affecting winter period intermittency in Taiwan's rivers, offering valuable reference for river and water resources management.

    Abstract I 摘要 III Acknowledgement V Table of Contents VI List of Tables VIII List of Figures IX List of Appendix XI Chapter 1 Introduction 1 1.1 Motivation and Background 1 1.2 Literature Review 3 1.2.1 Description of River Hydrology 3 1.2.2 Characteristics of Intermittent Rivers 10 1.3 Objectives 11 Chapter 2 Materials 13 2.1 Study Area 13 2.2 Database 14 2.2.1 Hydrological Indicators 16 2.2.2 Catchment Attributes 16 2.2.3 Regional Climate Indicators and Drought Indices 19 Chapter 3 Methodology 21 3.1 Recognizing the State of the River 21 3.1.1 Intermittency 21 3.1.2 Variability 22 3.1.3 Seasonality 22 3.1.4 Trend Analysis 26 3.2 Drought Indices 27 3.2.1 Standardized Precipitation Index (SPI) 28 3.2.2 Streamflow Drought Index (SDI) 28 3.3 Principal Component Analysis (PCA) 29 3.4 Correlation Analysis 31 Chapter 4 Results and Discussion 33 4.1 Analysis of Hydrology 33 4.1.1 The Status of Rivers in Taiwan 33 4.1.2 Trend Analysis of River 39 4.2 Spatial Correlation between Catchment Attributes and Intermittency 42 4.2.1 Relationship between Principal Components and Catchment Attributes 42 4.2.2 Correlation between Principal Components and Intermittency 45 4.3 Temporal Correlation of Catchment Attributes and Intermittency 47 4.3.1 Correlation of Intermittency with Climatic and Drought Indicators 47 4.3.2 Feasibility of Using Flow Intermittency as A Drought Indicator across Different Time Scales 53 Chapter 5 Conclusions and Suggestions 56 5.1 Conclusions 56 5.2 Suggestions 58 References 60 Appendix 65 Resume 71

    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific data, 5(1), 170191. https://doi.org/10.1038/sdata.2017.191
    Al-Faraj, F., Scholz, M., & Tigkas, D. (2014). Sensitivity of Surface Runoff to Drought and Climate Change: Application for Shared River Basins. Water, 6(10), 3033-3048. https://doi.org/10.3390/w6103033
    Baker, D. B., Richards, R. P., Loftus, T. T., & Kramer, J. W. (2004). A new flashiness index: Characteristics and applications to midwestern rivers and streams 1. Journal of the American Water Resources Association, 40(2), 503-522. https://doi.org/10.1111/j.1752-1688.2004.tb01046.x
    Belemtougri, A. P., Ducharne, A., Tazen, F., Oudin, L., & Karambiri, H. (2021). Understanding key factors controlling the duration of river flow intermittency: Case of Burkina Faso in West Africa. Journal of Hydrology: Regional Studies, 37. https://doi.org/10.1016/j.ejrh.2021.100908
    Berhanu, B., Seleshi, Y., Demisse, S., & Melesse, A. (2015). Flow Regime Classification and Hydrological Characterization: A Case Study of Ethiopian Rivers. Water, 7(6), 3149-3165. https://doi.org/10.3390/w7063149
    Burn, D. H. (1997). Catchment similarity for regional flood frequency analysis using seasonality measures. Journal of Hydrology, 202(1-4), 212-230. https://doi.org/10.1016/s0022-1694(97)00068-1
    Busch, M. H., Costigan, K. H., Fritz, K. M., Datry, T., Krabbenhoft, C. A., Hammond, J. C., Zimmer, M., Olden, J. D., Burrows, R. M., Dodds, W. K., Boersma, K. S., Shanafield, M., Kampf, S. K., Mims, M. C., Bogan, M. T., Ward, A. S., Perez Rocha, M., Godsey, S., Allen, G. H., . . . Allen, D. C. (2020). What’s in a Name? Patterns, Trends, and Suggestions for Defining Non-Perennial Rivers and Streams. Water, 12(7). https://doi.org/10.3390/w12071980
    Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A., Furtado, J. C., Mishra, V., Xiao, X., & Randall, R. M. (2021). Global distribution, trends, and drivers of flash drought occurrence. Nature communications, 12(1), 6330. https://doi.org/10.1038/s41467-021-26692-z
    D'Ambrosio, E., De Girolamo, A. M., Barca, E., Ielpo, P., & Rulli, M. C. (2017). Characterising the hydrological regime of an ungauged temporary river system: a case study. Environmental Science and Pollution Research, 24(16), 13950-13966. https://doi.org/10.1007/s11356-016-7169-0
    Datry, T., Larned, S. T., & Tockner, K. (2014). Intermittent Rivers: A Challenge for Freshwater Ecology. BioScience, 64(3), 229-235. https://doi.org/10.1093/biosci/bit027
    De Girolamo, A. M., Drouiche, A., Ricci, G. F., Parete, G., Gentile, F., & Debieche, T.-H. (2022). Characterising flow regimes in a semi-arid region with limited data availability: The Nil Wadi case study (Algeria). Journal of Hydrology: Regional Studies, 41. https://doi.org/10.1016/j.ejrh.2022.101062
    Döll, P., & Schmied, H. M. (2012). How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environmental Research Letters, 7(1). https://doi.org/10.1088/1748-9326/7/1/014037
    Gallart, F., Prat, N., García-Roger, E. M., Latron, J., Rieradevall, M., Llorens, P., Barberá, G. G., Brito, D., De Girolamo, A. M., Lo Porto, A., Buffagni, A., Erba, S., Neves, R., Nikolaidis, N. P., Perrin, J. L., Querner, E. P., Quiñonero, J. M., Tournoud, M. G., Tzoraki, O., . . . Froebrich, J. (2012). A novel approach to analysing the regimes of temporary streams in relation to their controls on the composition and structure of aquatic biota. Hydrology and Earth System Sciences, 16(9), 3165-3182. https://doi.org/10.5194/hess-16-3165-2012
    Gannon, J. P., Kelleher, C., & Zimmer, M. (2022). Controls on watershed flashiness across the continental US. Journal of Hydrology, 609. https://doi.org/10.1016/j.jhydrol.2022.127713
    Gleeson, T., Smith, L., Moosdorf, N., Hartmann, J., Dürr, H. H., Manning, A. H., van Beek, L. P. H., & Jellinek, A. M. (2011). Mapping permeability over the surface of the Earth. Geophysical Research Letters, 38(2). https://doi.org/10.1029/2010gl045565
    Gómez-Gener, L., Siebers, A. R., Arce, M. I., Arnon, S., Bernal, S., Bolpagni, R., Datry, T., Gionchetta, G., Grossart, H.-P., Mendoza-Lera, C., Pohl, V., Risse-Buhl, U., Shumilova, O., Tzoraki, O., von Schiller, D., Weigand, A., Weigelhofer, G., Zak, D., & Zoppini, A. (2021). Towards an improved understanding of biogeochemical processes across surface-groundwater interactions in intermittent rivers and ephemeral streams. Earth-Science Reviews, 220. https://doi.org/10.1016/j.earscirev.2021.103724
    IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Core Writing Team, H. Lee, & J. Romero, Eds.). IPCC. https://doi.org/10.59327/IPCC/AR6-9789291691647
    Jehn, F. U., Bestian, K., Breuer, L., Kraft, P., & Houska, T. (2020). Using hydrological and climatic catchment clusters to explore drivers of catchment behavior. Hydrology and Earth System Sciences, 24(3), 1081-1100. https://doi.org/10.5194/hess-24-1081-2020
    Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences, 374(2065). https://doi.org/10.1098/rsta.2015.0202
    Kaiser, H. F. (1960). The Application of Electronic Computers to Factor Analysis. Educational and Psychological Measurement, 20(1), 141-151. https://doi.org/10.1177/001316446002000116
    Katipoğlu, O. M. (2023). Prediction of Streamflow Drought Index for Short-Term Hydrological Drought in the Semi-Arid Yesilirmak Basin Using Wavelet Transform and Artificial Intelligence Techniques. Sustainability, 15(2). https://doi.org/10.3390/su15021109
    Kendall, M. G. (1975). Rank correlation methods.
    Kinnard, C., Bzeouich, G., & Assani, A. (2022). Impacts of summer and winter conditions on summer river low flows in low elevation, snow-affected catchments. Journal of Hydrology, 605. https://doi.org/10.1016/j.jhydrol.2021.127393
    Laaha, G., & Blöschl, G. (2006). Seasonality indices for regionalizing low flows. Hydrological Processes, 20(18), 3851-3878. https://doi.org/10.1002/hyp.6161
    Liang, C. P., Lin, T. C., Suk, H., Wang, C. H., Liu, C. W., Chang, T. W., & Chen, J. S. (2022). Comprehensive assessment of the impact of land use and hydrogeological properties on the groundwater quality in Taiwan using factor and cluster analyses. Science of the Total Environment, 851(Pt 1), 158135. https://doi.org/10.1016/j.scitotenv.2022.158135
    Malik, A., Kumar, A., & Singh, R. P. (2019). Application of Heuristic Approaches for Prediction of Hydrological Drought Using Multi-scalar Streamflow Drought Index. Water Resources Management, 33(11), 3985-4006. https://doi.org/10.1007/s11269-019-02350-4
    Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica: Journal of the econometric society, 13, 245-259. https://doi.org/10.2307/1907187
    McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology.
    Messager, M. L., Lehner, B., Cockburn, C., Lamouroux, N., Pella, H., Snelder, T., Tockner, K., Trautmann, T., Watt, C., & Datry, T. (2021). Global prevalence of non-perennial rivers and streams. Nature, 594(7863), 391-397. https://doi.org/10.1038/s41586-021-03565-5
    Mimeau, L., Künne, A., Devers, A., Branger, F., Kralisch, S., Lauvernet, C., Vidal, J.-P., Bonada, N., Csabai, Z., Mykrä, H., Pařil, P., Polović, L., & Datry, T. (2025). Projections of streamflow intermittence under climate change in European drying river networks. Hydrology and Earth System Sciences, 29(6), 1615-1636. https://doi.org/10.5194/hess-29-1615-2025
    Ministry of Digital Affairs. (2024). Government Information Open Platform. https://data.gov.tw/
    Nalbantis, I., & Tsakiris, G. (2009). Assessment of Hydrological Drought Revisited. Water Resources Management, 23(5), 881-897. https://doi.org/10.1007/s11269-008-9305-1
    Olin, B., & Beevers, L. (2024). River Flashiness in Great Britain: A Spatio-Temporal Analysis. Atmosphere, 15(9). https://doi.org/10.3390/atmos15091025
    Oueslati, O., De Girolamo, A. M., Abouabdillah, A., Kjeldsen, T. R., & Lo Porto, A. (2015). Classifying the flow regimes of Mediterranean streams using multivariate analysis. Hydrological Processes, 29(22), 4666-4682. https://doi.org/10.1002/hyp.10530
    Palmer, W. C. (1965). Meteorological Drought. (Vol. 45). US. Weather Bureau.
    Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 2(11), 559-572. https://doi.org/10.1080/14786440109462720
    Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633-1644. https://doi.org/10.5194/hess-11-1633-2007
    Poff, N. L., & Ward, J. (1989). Implications of Streamflow Variability and Predictability for Lotic Community Structure: A Regional Analysis of Streamflow Patterns. Canadian Journal of Fisheries and Aquatic Sciences, 46. https://doi.org/10.1139/f89-228
    Poshtiri, M. P., & Pal, I. (2016). Patterns of hydrological drought indicators in major U.S. River basins. Climatic Change, 134(4), 549-563. https://doi.org/10.1007/s10584-015-1542-8
    Poshtiri, M. P., Pal, I., Lall, U., Naveau, P., & Towler, E. (2019). Variability patterns of the annual frequency and timing of low streamflow days across the United States and their linkage to regional and large‐scale climate. Hydrological Processes, 33(11), 1569-1578. https://doi.org/10.1002/hyp.13422
    Reynolds, L. V., Shafroth, P. B., & LeRoy Poff, N. (2015). Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change. Journal of Hydrology, 523, 768-780. https://doi.org/10.1016/j.jhydrol.2015.02.025
    Rodrigues, S., Xavier, B., Nogueira, S., & Antunes, S. C. (2022). Intermittent Rivers as a Challenge for Freshwater Ecosystems Quality Evaluation: A Study Case in the Ribeira de Silveirinhos, Portugal. Water, 15(1). https://doi.org/10.3390/w15010017
    Sabater, S., Barcelo, D., De Castro-Catala, N., Ginebreda, A., Kuzmanovic, M., Petrovic, M., Pico, Y., Ponsati, L., Tornes, E., & Munoz, I. (2016). Shared effects of organic microcontaminants and environmental stressors on biofilms and invertebrates in impaired rivers. Environmental Pollution, 210, 303-314. https://doi.org/10.1016/j.envpol.2016.01.037
    Šarauskienė, D., Akstinas, V., Nazarenko, S., Kriaučiūnienė, J., & Jurgelėnaitė, A. (2020). Impact of physico‐geographical factors and climate variability on flow intermittency in the rivers of water surplus zone. Hydrological Processes, 34(24), 4727-4739. https://doi.org/10.1002/hyp.13912
    Sauquet, E., Shanafield, M., Hammond, J. C., Sefton, C., Leigh, C., & Datry, T. (2021). Classification and trends in intermittent river flow regimes in Australia, northwestern Europe and USA: A global perspective. Journal of Hydrology, 597. https://doi.org/10.1016/j.jhydrol.2021.126170
    Smakhtin, V. U. (2001). Low flow hydrology: a review. Journal of Hydrology, 240(3-4), 147-186. https://doi.org/10.1016/S0022-1694(00)00340-1
    Tabari, H., Nikbakht, J., & Hosseinzadeh Talaee, P. (2013). Hydrological Drought Assessment in Northwestern Iran Based on Streamflow Drought Index (SDI). Water Resources Management, 27(1), 137-151. https://doi.org/10.1007/s11269-012-0173-3
    Tayer, T. C., Beesley, L. S., Douglas, M. M., Bourke, S. A., Callow, J. N., Meredith, K., & McFarlane, D. (2023). Ecohydrological metrics derived from multispectral images to characterize surface water in an intermittent river. Journal of Hydrology, 617. https://doi.org/10.1016/j.jhydrol.2023.129087
    TCCIP. Gridded Historical Daily Date, Taiwan Climate Change Projection Information and Adaptation Knowledge Platform (TCCIP). https://tccip.ncdr.nat.gov.tw/index_eng.aspx
    Tijdeman, E., Barker, L. J., Svoboda, M. D., & Stahl, K. (2018). Natural and Human Influences on the Link Between Meteorological and Hydrological Drought Indices for a Large Set of Catchments in the Contiguous United States. Water Resources Research, 54(9), 6005-6023. https://doi.org/10.1029/2017wr022412
    Tramblay, Y., Rutkowska, A., Sauquet, E., Sefton, C., Laaha, G., Osuch, M., Albuquerque, T., Alves, M. H., Banasik, K., Beaufort, A., Brocca, L., Camici, S., Csabai, Z., Dakhlaoui, H., DeGirolamo, A. M., Dörflinger, G., Gallart, F., Gauster, T., Hanich, L., . . . Datry, T. (2020). Trends in flow intermittence for European rivers. Hydrological Sciences Journal, 66(1), 37-49. https://doi.org/10.1080/02626667.2020.1849708
    Uys, M. C., & O'keeffe, J. H. (1997). Simple words and fuzzy zones: early directions for temporary river research in South Africa. Environmental Management, 21(4), 517-531. https://doi.org/10.1007/s002679900047
    Water Resources Agency. (2022). Hydrological Year Book 2022. Water Resources Agency.
    Water Resources Agency. (2024). Hydrological Year Book (From 1960 to 2022). Water Resources Agency. https://www.wra.gov.tw/
    Water Resources Planning Institute. (2006). River Management and Environmental Construction Planning Reference Manual. Water Resources Agency, Ministry of Economic Affair.
    Wray, N., Bowie, D., Pattison, I., Angeloudis, A., & Beevers, L. (2024). Disentangling climate change & land use change effects on river flows: A probabilistic approach. Journal of Hydrology, 639. https://doi.org/10.1016/j.jhydrol.2024.131665
    Yaseen, Z. M., Ali, M., Sharafati, A., Al-Ansari, N., & Shahid, S. (2021). Forecasting standardized precipitation index using data intelligence models: regional investigation of Bangladesh. Scientific reports, 11(1), 3435. https://doi.org/10.1038/s41598-021-82977-9
    Yeh, C.-F., Wang, J., Yeh, H.-F., & Lee, C.-H. (2015). SDI and Markov Chains for Regional Drought Characteristics. Sustainability, 7(8), 10789-10808. https://doi.org/10.3390/su70810789
    Yeh, H.-F. (2019). Using integrated meteorological and hydrological indices to assess drought characteristics in southern Taiwan. Hydrology Research, 50(3), 901-914. https://doi.org/10.2166/nh.2019.120
    Yeh, H.-F., & Chen, H.-Y. (2022). Assessing the long-term hydrologic responses of river catchments in Taiwan using a multiple-component hydrograph approach. Journal of Hydrology, 610. https://doi.org/10.1016/j.jhydrol.2022.127916
    Yildirim, I., & Aksoy, H. (2022). Intermittency as an indicator of drought in streamflow and groundwater. Hydrological Processes, 36(6). https://doi.org/10.1002/hyp.14615
    Yu, S., Bond, N. R., Bunn, S. E., Xu, Z., & Kennard, M. J. (2018). Quantifying spatial and temporal patterns of flow intermittency using spatially contiguous runoff data. Journal of Hydrology, 559, 861-872. https://doi.org/10.1016/j.jhydrol.2018.03.009
    Yu, S., Shanafield, M., & Kennard, Mark J. (2024). Assessing the Influence of Zero‐Flow Threshold Choice for Characterising Intermittent Stream Hydrology. Hydrological Processes, 38(10). https://doi.org/10.1002/hyp.15300
    Zipper, S. C., Hammond, J. C., Shanafield, M., Zimmer, M., Datry, T., Jones, C. N., Kaiser, K. E., Godsey, S. E., Burrows, R. M., Blaszczak, J. R., Busch, M. H., Price, A. N., Boersma, K. S., Ward, A. S., Costigan, K., Allen, G. H., Krabbenhoft, C. A., Dodds, W. K., Mims, M. C., . . . Allen, D. C. (2021). Pervasive changes in stream intermittency across the United States. Environmental Research Letters, 16(8). https://doi.org/10.1088/1748-9326/ac14ec

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE