簡易檢索 / 詳目顯示

研究生: 林健男
Lin, Chien-Nan
論文名稱: 鈀膜分離氫氣之研究:氣體成分之影響及高溫水氣轉移反應
An investigation of hydrogen separation by a palladium membrane: Gas composition effect and high temperature water gas shift reaction
指導教授: 陳維新
Chen, Wei-Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 106
中文關鍵詞: 鈀膜氣體成分滲透係數滲透阻力高溫水氣轉移反應
外文關鍵詞: Palladium membrane, Gas compositions, Permeance, Permeance resistance, High temperature water gas shift reaction.
相關次數: 點閱:78下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以實驗方式,探討不同氣體成分在鈀膜滲透過程中之影響。藉由實驗結果,了解水氣轉移反應產生之氣體成分對氫氣滲透鈀膜之影響,做為未來應用之參考依據。本文主要分為兩大部分,如下所述。
    第一部分採用高通量純鈀膜進行滲透,將分壓差定在1、2、3、4 atm,並設定在320 °C、350 °C、380 °C,探討在不同操作條件下氣體成分對氣體滲透鈀膜之影響。本實驗所使用之混合氣成分為10% N2 + 90% H2、10% CO2 + 90% H2、10% CO + 90% H2、10% CO2 + 10% N2 + 80% H2及10% N2 + 10% CO + 80% H2。由實驗結果可以得知氣體成分對氫氣滲透影響之排序為CO>CO2>N2。本研究也導入無因次滲透係數,並藉由氫氣滲透公式可得滲透阻力之參數,藉由此參數可以準確的由雙成分混合氣預測三成分混 合氣之無因次滲透係數,這也代表所含的非氫氣體並沒有交互作用。而本研究也藉由混合氣探討鈀膜管之氫氣回收率及鈀膜之活化能。在氫氣回收率方面,本研究所使用之鈀膜管氫氣回收率依進氣成分不同可以由75%到100%。而氫氣回收率最高操作條件為2至3atm。在鈀膜之活化能方面,依進氣成分不同所測得之活化能由2至18 kJ mol-1,這意味著進氣成分含有非氫氣體時,滲透係數比在純氫時進行滲透對溫度更為敏感,特別是三成分氣體。 
    第二部分則在薄膜反應器內進行水氣轉移反應,探討高壓對水氣轉移反應的影響。本實驗採用Fe-Cr觸媒在350 °C、400 °C、450°C及不同的操作壓力(1, 5, 9 atm)下進行高溫水轉移反應。而本實驗也使用不同之Steam/CO(S/C)比,探討S/C比對水氣轉移反應中CO轉化率之影響。在本研究中所通入之氣體為煤炭氣化所產生之混合氣,其成分為經由實驗結果可知,而其CO轉化率大約在30-65%之間,而在高壓(5或9 atm)下進行水氣轉移反應會造成CO轉化率降低,同時亦會產生甲烷化反應。

    This study is divided into two parts. The first part is investigte the permeances of two palladium (Pd) membranes in pure H2, binary, and ternary gas mixtures. Three membrane temperatures of 320, 350, and 380 °C and five H2 partial pressure differences of 1, 2, 3, 4, and 5 atm are considered. With 10 % of gas impurities in H2, the profiles of dimensionless permeance suggest that H2 permeation rate is lessened by approximately 50 % to 90 %, and the permeance reduced by the gas impurities is ranked as: CO>CO2>N2. By introducing a parameter of permeance resistance, which is the reciprocal of permeance, the permeance resistance and thereby H2 permeation rate in a ternary gas mixture can be predicted from the summation of individual permeance resistances in binary gas mixtures. At least 75 % and up to 100 % of H2 in the gas mixtures can be recovered in the membrane system, and the maximum H2 recovery is always exhibited at the H2 partial pressure difference of 2 or 3 atm. In the Arrhenius-type equation describing the relationship of permeance and temperature, the activation energy is between approximately 2 and 18 kJ mole-1. In general, the permeances of the membranes in gas mixtures, especially in ternary gas mixtures, are more sensitive to temperature when compared to those in pure H2. In the second part, WGSR at different temperatures (350 °C, 400 °C, 450 °C) and different pressures (1 atm, 5 atm, 9 atm) are investigated. The Fe-Cr catalysis is used in the reaction, and the steam CO ratio is from 2 to 4. From the results of experiment, the CO conversion is from 30 to 65%. approximately WGSR at high pressures causes methanation and coking, it will retard hydrogen production and hydrogen through the palladium membrane.

    摘要 I Abstract III 致謝 VI 目錄 VII 表目錄 XI 圖目錄 XII 符號說明(Nomenclature) XVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 8 1.3 研究架構 13 第二章 文獻回顧 15 2.1 薄膜材料 15 2.2 氣體滲透行為 16 2.3 薄膜滲透相關理論 19 2.4 氣體成分對鈀膜之影響 22 2.4.1濃度極化現象 23 2.4.2鈀膜表面的競爭吸附 24 2.4.3鈀膜表面積碳的影響 25 2.5 水氣轉移反應 26 2.6 薄膜反應器進行水氣轉移反應 29 第三章 研究方法 31 3.1 實驗系統 31 3.1.1薄膜反應系統 31 3.1.2水氣轉移反應器 32 3.2 儀器設備 33 3.2.1膜管介紹 35 3.2.2膜管製程 37 3.2.3功率控制器暨薄膜反應管 40 3.2.4水氣轉移觸媒 41 3.2.6氣體分析儀(Gas Analyzer) 43 3.2.7氣相層析儀(Gas Chromatography) 45 3.3 實驗流程與操作條件 47 3.3.1氫氣滲透薄膜之研究 47 3.3.2水氣轉移反應之研究 51 3.4 實驗再現性 54 3.4.1氫氣滲透薄膜之實驗再現性 54 3.4.2水氣轉移反應之實驗再現性 55 第四章 結果與討論 56 4.1 鈀膜分離氫氣之研究 56 4.1.1壓力指數 56 4.1.2於雙成分混合氣中進行之氫氣滲透 61 4.1.3雙成分混合氣之無因次滲透係數 67 4.1.4三成分混合氣與氫氣滲透阻力 70 4.1.5氫氣回收率 77 4.1.6鈀膜分離氫氣之活化能 81 4.2 水氣轉移反應之研究 87 4.2.1高壓對水氣轉移反應之影響 87 4.2.2 Steam/CO比對水氣轉移反應之影響 89 4.2.3 溫度對水氣轉移反應之影響 90 第五章 結論與未來工作 91 5.1 結論 91 5.2 未來工作 93 參考文獻 94 自述 105

    Adhikari S., Fernando S. (2006). Hydrogen membrane separation techniques. Industrial Engineering Chemistry Research, Vol. 45, pp. 875-881.
    Amphlett J.C., Mann R.F., Pepplely B.A. (1996). On board hydrogen purification for steam reformation/pem fuel cell vehicle power plants. International Journal of Hydrogen Energy, Vol. 21, pp. 673-678.
    Catalano J., Baschetti M.G., Sarti G.C. (2011). Influence of water vapor on hydrogen permeation through 2.5 μm Pd-Ag membranes. Internalionalt Journal of Hydrogen Energy, Vol. 36, pp. 8658-8673.
    Chen C.H., Ma Y.H. (2010). The effect of H2S on the performance of Pd and Pd/Au composite membrane. Journal of Membrane Science; Vol. 362, pp. 535-544.
    Chein R.Y., Chen Y.C., Chang C.S., Chung J.N. (2010). Numerical modeling of hydrogen production from ammonia decomposition for fuel cell applications. International Journal of Hydrogen Energy, Vol. 35, pp. 589-597.
    Chen W.H. (2002). An analysis of gas absorption by a liquid aerosol in a stationary environment. Atmospheric Environment, Vol. 36, pp. 3671-3683.
    Chen W.H., Syu W.Z., Hung C.I. (2011). Numerical characterization on concentration polarization of hydrogen permeation in a Pd-based membrane tube. International Journal of Hydrogen Energy, Vol. 36, pp. 14734-14744.
    Chen W.H., Lin C.H., Lin Y.L. (2014a). Flow-field design for improving hydrogen recovery in a palladium membrane tube. Journal of Membrane Science. Vol. 472, pp. 45-54.
    Chen W.H., Syu W.Z., Hung C.I., Lin Y.L. (2012). A numerical approach of conjugate hydrogen permeation and polarization in a Pd membrane tube. International Journal of Hydrogen Energy, Vol. 37, pp. 12666-12679.
    Chen W,H., Hsia M.H., Chi Y.H., Lin Y.L., Yang C.C. (2014b). Polarization phenomena of hydrogen-rich gas in high-permeance Pd and Pd–Cu membrane tubes. Applied Energy, Vol. 113, pp. 41-50.
    Chen W,H., Hsia M.H., Lin Y.L. Chi Y.H., Yang C.C. (2013). Hydrogen permeation and recovery from H2-N2 gas mixtures by Pd membranes with high permeance. International Journal of Hydrogen Energy, Vol. 38, pp. 14730-14742.
    Chen F.L. (2013). Hydrogen permeation through palladium-based alloy membranes in mixtures of 10% methane and ethylene in the hydrogen. International Journal of Hydrogen Energy, Vol. 21, pp. 555-561.
    Cornaglia C.A., Tosti S., Sansovini M., Munera J., Lombardo E.A. (2013). Novel catalyst for the WGS reaction in a Pd-membrane reactor. Applied Catalysis A: General, Vol. 462-463, pp. 278-286.
    Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D. (2007). A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, andmitigation. Journal of Power Sources , Vol. 165, pp. 739-756.
    Chi Y.H., Lin J.J., Lin Y.L., Yang C.C., Huang J.H. (2015). Influence of the rotation rate of porous stainless steel tubes on electroless palladium deposition. Journal of Membrane Science, Vol. 475, pp.259-265.
    Chi Y.H., Lin J.J., Lin Y.L., Yang C.C., Huang J.H. (2013). Preparation of a novel Pd/layered double hydroxide composite membrane for hydrogen filtration and characterization by thermal cycling. International journal of hydrogen energy, Vol. 38, pp.13734-13741.
    Dunbar W.Z. (2015). Hydrogen purification of synthetic water gas shift gases using microstructured palladium membranes. Journal of Power Sources, Vol. 297, pp. 525-533.
    Djukic M.B., Zeravcic V.S., Bakic G.M., Sedmak A., Rajicic B. (2015). Hydrogen damage of steels: A case study and hydrogen embrittlement model. Engineering Failure Analysis, Vol. 58, pp. 485-498.
    Dittmeyer R., Hollein V., Daub K. (2001). Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium. Journal of. Molecular. Catalysis A: Chemical, Vol. 173, pp. 135–184.
    Gao H., Lin Y.S., Li Y., Zhang B. (2004). Chemical stability and its improvement of palladium-based metallic membranes. Industrial and Engineering Chemistry Research, Vol. 43, pp. 6920-6930.
    Gallucci F., Chiaravalloti F., Tosti S., Drioli E., Basile A. (2007). The effect of mixture gas on hydrogen permeation through a palladium membrane: Experimental study and theoretical approach. International journal of hydrogen energy, Vol. 32, pp. 1837-1845.
    Gao H, Lin JYS, Li Y, Zhang B. (2005). Electroless plating synthesis, characterization and permeation properties of Pd-Cu membranes supported on ZrO2 modified porous stainless steel. Journal of membrane science, Vol. 265, pp. 142-152.
    Gallo M., Nenoff T.M., Mitchell M.C. (2006), Selectivities for binary ixtures of hydrogen/methane and hydrogen/carbon dioxide in silicalite and ETS-10 by Grand Canonical Monte Carlo techniques. Fluid Phase Equilibria, Vol. 247, pp. 135-142.
    Graham T. (1866). On the absorption and Dialytic separation of gases by colloid septa. Philosophical Transactions of the Royal Society, Vol. 156, pp. 399-439.
    Hou K. and Hughes R. (2002). The effect of external mass transfer, competitive adsorption and coking on hydrogen permeation through thin Pd/Ag membranes. Journal of Membrane Science, Vol. 206, pp. 119-130.
    Hulme J., Komaki M., Nishimura C., Gwak J. (2011). The effects of gas mixtures on hydrogen permeation through Pd-Ag/V-Ni alloy composite membrane, Current Applied Physics. Phys, Vol. 11, pp. 972-975.
    Iwuchukwu I.J., Sheth A. (2008). Mathematical modeling of high temperatureand high-pressure dense membrane separation of hydrogen fromgasification. Chemical Engineering and Processing ,Vol. 47, pp. 1292-1304.
    Iulianelli A., Seelam P.K., Liguori S., Longo T., Keiski R., Calabro V., Basile A. (2011). Hydrogen production for PEM fuel cell by gas phase reforming of glycerol as byproduct of bio-diese. The use of a Pd-Ag membrane reactor at middle reaction temperature. International Journal of Hydrogen Energy, Vol. 36, pp. 3827-3834.
    Koros W.J., Fleming GK. (1993) Membrane-based gas separation. Journal of Membrane Science, Vol. 83, pp. 1-80.
    Krämer M., Duisberg M., Stöwe K., Maier W.F. (2007). Highly selective CO methanation catalysts for the purification of hydrogen-rich gas mixtures. Journal of catalysis, Vol. 251, pp. 410-422.
    Kikuchi, E. (2000). Membrane reactor application to hydrogen production. Catalysis Today, Vol. 56, pp. 97-101.
    Lin Y. M., Rei M. H. (2000), Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer. International Journal of Hydrogen Energy, Vol. 25, pp. 211-219.
    Lin Y.M., Liu S.L., Chuang C.H., Chu Y.T. (2003). Effect of incipient removal of hydrogen through palladium membrane on the conversion of methane steam reforming experimental and modeling. Catalysis. Today, Vol. 82, pp. 127-139.
    Lim H., Gu Y., Oyama T. (2012), Studies of the effect of pressure and hydrogen permeance on the ethanol steam reforming reaction with palladium- and silica-based membranes. Journal of Membrane Science, Vol. 165, pp. 135-141.
    Li, Y., Fu Q. (2000). Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxidecatalysts. Applied Catalysis B: Environmental, Vol. 27, pp.179-191.
    Li A., Grace J.G., Lim C.J., Lim A. (2007). Preparation of thin Pd-based composite membrane on planar metallic substrate Part I: Pre-treatment of porous stainless steel substrate. Journal of membrane science, Vol. 298, pp. 175-181.
    Lu H., Zhu L., Wang W., Yang W., Tong J. (2015). Pd and Pd-Ni alloy composite membranes fabricated by electroless plating method on capillary α–Al2O3 substrates. International Journal of Hydrogen Energy, Vol. 40, pp. 3548-3556.
    Mallada R., Menéndez M. (2008), Inorganic membranes: synthesis, characterization and applications. Membrane science and technology series, Vol.13, Oxford: Elsevier.
    Mendes D., Chibante V., Zheng J.M., Tosti S., Borgognoni F., Mendes A., Madeira L.M. (2013). Enhancing the production of hydrogen via water-gas shift reaction using Pd-based membrane reactors. International Journal of Hydrogen Energy, Vol. 38, pp. 2292-2305.
    Mejdell A.L., Jondahl M., Peters T.A., Bredesen R., Venvik H.J. (2009). Effects of CO and CO2 on hydrogen permeation through a ~3 μm Pd/Ag 23wt.% membrane employed in a microchannel membrane configuration. Separation and Purification Technology, Vol. 68, pp. 179–184.
    Morreale B.D., Ciocco M.V., Enick R.M., Morsi B.J., Howard B.H., Cugini A.V. Rothenberger K.S. (2003). The permeability of hydrogen in bulk palladium at elevated temperatures and pressures. Journal of membrane science, Vol. 212, pp. 87-97.
    Nguayen T.H., Mori S., Suzuki M., Hydrogen permeance and the effect of H2O and CO on the permeability of Pd0.75Ag0.25 membranes under gas-driven permeation and plasma-driven permeation. Chemical Engineering Journal, Vol. 155, pp. 55-61.
    Pan X., Wang X., Yang W., Xiong G. (2001). The effect of co-existing nitrogen on hydrogen permeation through thin Pd composite membranes. Separation and Purification Technology, Vol. 54, pp. 262-271.
    Peters T. A., Stange M., Klette H., Bredesen R. (2008). High pressure performance of thin Pd–23%Ag/stainless steel composite membranes in water gas shift gas mixtures; influence of dilution, mass transfer and surface effects on the hydrogen flux. Journal of membrane science, Vol. 279, pp. 119-127.
    Perez P., Cornaglia C.A., Mendes A., Madeira L.M., Tosti S. (2015). Surface effects and CO/CO2 influence in the H2 permeation through a Pd-Ag membrane: A comprehensive model. International Journal of Hydrogen Energy, Vol. 40, pp. 6566-6572.
    Peramanu S., Cox B.G., Pruden B.B. (1999). Economics of hydrogen recovery processes for the purification of hydroprocessor purge and off-gases. International Journal of Hydrogen Energy, Vol. 24 pp.05-24.
    Pizzi D., Worth R., Baschetti M.G., Sarti G.C., Noda K.I. (2008) Hydrogen permeability of 2.5 μm palladium-silver membranes deposited on ceramic supports. Journal of membrane science, Vol. 325, pp. 446-453.
    Pinto F., Andre R. N., Franco C., Carolino C., Gulyurtlu I. (2013). Effect of syngas composition on hydrogen permeation through a Pd-Ag membrane, Fuel, Vol. 103, pp. 444-453.
    Phair J.W., Donelson R. (2006). Developments and design of novel (Non-palladium-based) metal membranes for hydrogen separation. Industrial & Engineering Chemistry Research ,Vol 45, pp. 5657-5674.
    Rothenberger K.S., Cugini A.V., Howard B.H., Killmeyer R.P., Ciocco M.V., Morreale B.D. (2004). High pressure hydrogen permeance of porousstainless steel coated with a thin palladium film via electroless plating. Journal of Membrane Science. Vol. 244, pp. 55-68.
    Ryi S.K., Park J.S., Kim S.H., Cho S.H., Kim D.W., Um K.Y. (2006). Characterization of Pd-Cu-Ni ternary alloy membrane prepared by magnetron sputtering and Cu-reflow on porous nickel support for hydrogen separation. Separation and Purification Technology, Vol. 50, pp. 82-91.
    Ryi S.K., Lee S.W., Oh D.K., Seo B.S., Park J.W., Park J.S., Lee D.W., Lim S.S. (2014). Electroless plating of Pd after shielding the bottom of planar porous stainless steel for a highly stable hydrogen selective membrane. Journal of membrane science, Vol. 467, pp. 93-99.
    Sakamoto Y., Kinari T., Chen F.L., Sakamoto F. (1997) Hydrogen permeation through palladium alloy membranes in mixture gases of 10% nitrogen and ammonia in the hydrogen. International journal of Hydrogen Energy, Vol. 22, pp. 369-375.
    Saravanana P., Jayamoorthy K., Anandakumar S. (2016). Fluorescence quenching of APTES by Fe2O3 nanoparticles – Sensor and antibacterial applications. Journal of Luminescence, Vol. 178, pp. 241-248.
    Sakamoto Y., Chen F.L., Kinari T., Sakamoto F. (1996) Effect of carbon monoxide on hydrogen permeation in some palladium-based alloy membranes. International journal of Hydrogen Energy, Vol. 21, pp. 1017-1024.
    Spillman R.W. (1989), Economics of gas separation membranes. Chemical Engineering Progress, Vol. 85, pp. 41-62.
    Santucci A., Borgognoni F., Vadrucci M., Tosti S. (2013). Testing of dense Pd-Ag tubes: Effect of pressure and membrane thickness on the hydrogen permeability. Journal of Membrane Science, Vol. 444, pp. 378-383.
    Sakurai H, Akita T, Tsubota S, Kiuchi M, Haruta M. (2005). Low-temperature activity of Au/ CeO2 for water gas shift reaction and characterization by ADF-STEM, temperature-programmed reaction, and pulse reaction. Applied Catalysis A: General, Vol. 291, pp. 179-187.
    Sanz R., Calles J.A., Alique D., Furones L. (2014). H2 production via water gas shift in a composite Pd membrane reactor prepared by the pore-plating method. International Journal of Hydrogen Energy, Vol. 39, pp. 4739-4748.
    Shi Z.L., Wu S.Q., Szpunar J.A., Roshd M. (2006). An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition. Journal of Membrane Science, Vol. 280, 705-711.
    Tanka T., Utaka T., Kikuchi R., Takeguchi T., Sasaki K., Eguchi K.(2003). Water gas shift reaction for the reformed fuels over Cu/MnO catalysts prepared via spinel-type oxide. Journal of Catalysis, Vol. 215, pp. 271-278.
    Tosti S., Basile A., Borelli R., Borgognoni F., Castelli S., Fabbricino M,Gallucci F., Licusati C. (2009). Ethanol steam reforming kinetics of a Pd-Agmembrane reactor. International Journal of Hydrogen Energy , Vol. 34, pp. 4747-4754.
    Tosti S., Basile A., Bettinali L., Borgognoni F., Chiaravalloti F., Gallucci F. (2006). Long-term tests of Pd-Ag thin wall permeator tube. Journal of Membrane Science, Vol. 284, pp. 393-397.
    Tournier G., Pijolat C. (2005). Selective filter for SnO2-based gas sensor:application to hydrogen trace detection. Sensors and Actuators B, Vol. 106, pp. 553-562.
    Tong J.H., Su L.L., Haraya K. (2008). Thin Pd membrane on α-Al2O3 hollow fiber substrate without any interlayer by electroless plating combined with embedding Pd catalyst in polymer template. Journal of Membrane Science, Vol. 310, pp. 93-101.
    Tucho W.M., Veneik H.J., Stange M., Walmsley J.C., Holmestad R., Bredesen R. (2009). Effects of thermal activation on hydrogen permeation properties of thin, self-supported Pd/Ag membranes. Separation and Purification Technology, Vol. 68, pp. 403-410.
    Wang Z. Z., Han W. F., Liu H. Z. (2016). Hydrothermal synthesis of sulfur-resistant MOS2 catalyst for methanation reaction. Catalysis Communications, Vol. 84, pp. 120-123.
    Wang D., Tong J., Xu H., Matsumura Y. (2004). Preparation of palladium membrane over porous stainless steel tube modified with zirconium oxide. Cataysis. Today, Vol. 95, pp. 689-693.
    Wang W., Pan X., Zhang X., Yang W., Xiong G. (2007) The effect of co-existing nitrogen on hydrogen permeation through thin Pd composite membranes. Separation and Purification Technology, Vol. 54, pp. 262-271.
    Yao Y., Wu H., Liu Z. (2015). A new prediction model for the effective thermal conductivity of high porosity open-cell metal foams. International Journal of Thermal Sciences, Vol. 92, pp. 56-67.
    Yang J.Y., Komaki M., Nishimura C. (2007). Effect of overlayer thickness onhydrogen permeation of Pd60Cu40/V-15Ni composite membranes. International Journal of Hydrogen Energy Vol. 32, pp.1820-1824.
    Zhang C., Wang Z., Cai Y., Yang D., Yuan S. (2013). Investigation of gas permeation behavior in facilitated transport membranes: Relationship between gas permeance and partial pressure. Chemical Engineering Journal, Vol. 225, pp. 744-751.
    Zerva C., Philippopoulos C.J. (2006). Ceria catalysts for water gas shift reaction: Influence of preparation method on their activity. Applied Catalysis B: Environmental, Vol. 67, pp.105-112.
    徐南平,邢衛紅,趙宜江(2004年4月)。“無機膜分離技術與應用”。化學工業出版社。
    曲新生,陳發林(2006年4月/初版)。“氫能技術”。五南圖書出版股份有限公司。
    朱秦億(2007年6月)。“鈀及鈀銀複合膜之製備特性分析及其氫/氮選透性之研究”。國立成功大學化學工程系博士論文。
    市川勝(2009年8月)。“圖解氫能源”。世茂出版有限公司。
    陳維新(2015a年5月/四版)。 “生質物與生質能”。高立圖書有限公司。
    陳維新(2015b年2月/八版)。“能源概論”。高立圖書有限公司。
    陳維新與江金龍(2015年2月/十三版)。 “空氣污染與控制”。高立圖書有限公司。
    陳維新(2015年2月/二版)。 “綠色能源與永續發展”。高立圖書有限公司。
    徐毓智(2010年6月)。“水氣轉移於超重力場中與甲醇自熱重組反應產氫之特性”。國立台南大學綠色能源科技學系碩士論文。
    許博智(2011年6月)。“變壓過程中進行氫氣穿越鈀及鈀合金薄膜之暫態動力行為”。國立台南大學綠色能源科技學系碩士論文。
    邱奕翰(2009年6月)。“氫氣穿越鈀膜之暫態動力行為與模式化”。國立台南大學綠色能源科技學系碩士論文。
    夏銘顯(2013年6月)。“氫氮混合氣穿越高滲透係數鈀基薄膜之濃度極化與氫氣回收”。國立台南大學綠色能源科技學系碩士論文。
    林昶宏(2015年6月)。“鈀膜分離氫氣之研究:流場設計與界面質量輸送”。國立成功大學航空太空工程學系碩士論文。
    陳盈儒(2009年6月)。“鈀銀合金膜反應器進行水煤氣轉化反應之研究”。逢甲大學化學工程學系碩士論文。

    下載圖示 校內:2019-08-01公開
    校外:2019-08-01公開
    QR CODE