| 研究生: |
林晏正 Lin, Yen-Cheng |
|---|---|
| 論文名稱: |
質子交換膜燃料電池燃料流道入出口幾何設計與流場分析 Flow Analysis and Geometry Design on the inlet and outlet of the multiple fuel channels of PEMFC |
| 指導教授: |
洪振益
Hung, Chen-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 質子交換膜燃料電池 、流道入出口設計 、計算流體力學 |
| 外文關鍵詞: | CFD, Proton Exchange Membrane Fuel Cell( PEMFC), Entrance-Outlet Design |
| 相關次數: | 點閱:83 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
燃料電池具低污染、高效率等特性,為未來最具潛力的替代能源之一,而提昇其功率密度也是目前極欲突破的目標。質子交換膜燃料電池擁有低溫運作、快速啟動、高功率密度、壽命長、固態非腐蝕性電解質、設計簡單及應用範圍廣等多項優點,適合應用於車輛系統及3C家電用產品的動力來源裝置,故本論文將針對質子交換膜燃料電池來進行研究。
在質子交換膜燃料電池中流道的設計為一重要問題,即如何藉由流道入出口流量管制的設計使得在每一條流道中的反應氣體流量為相同,達到在每一流道中反應氣體濃度能均勻分配的目的。本研究擬藉由針對多流道進口處的幾何形狀設計,進行流場之數值模擬,藉由計算流體力學數值模擬的結果,來評估各式流道口的設計對其電化學性能影響,以期獲得最佳燃料管理之流道入出口設計。
關鍵詞:質子交換膜燃料電池、流道入出口設計、計算流體力學
Fuel cells are used for power generation with low emission and high efficiency. Fuel cell will become one of the potential alternative energy sources in the future, and currently, the most emergent issue is to raise the cell power density. The major advantages of Proton Exchange Membrane Fuel Cell (PEMFC) are: low-temperature operation, quick starting, high energy density, long-life operation, solid non-corrosive electrolyte, and simple design. Therefore, the wide applications of PEMFC can be found in many industries and transportations, such as the power source of hybrid vehicles and 3C household appliances. Then, in this study, the PEMFC is the target of study.
One of the important problems in the design of multiple fuel channels for PEMFC is, how to make the reaction rate of fuel gas in every channel to be as uniform as possible. This problem cannot be found in the single-channel design of PEMFC. By the appropriate geometry design at the entrance and outlet of every channel, the fuel can be controlled to equally flow into each channel. Then the reaction rate between the fuel gas and diffusion layer in each channel will be the same and the dead zone would not be happened in some channel. In this study, the numerical simulations of flow fields will be carried out to assess the influence of entrance and outlet geometry design on the electrochemistry performance of cell. It is hoped that, with the simulation result, the optimal geometry design of each channel entrance can be proposed.
Keywords:Proton Exchange Membrane Fuel Cell( PEMFC), Entrance-Outlet Design, CFD
[1]顏宇欣, ”3C 用燃料電池介紹” , 工業材料雜誌, 169期, pp. 142-145 (2001)。
[2]A.J. Appleby and Texas A&M University, “Fuel Cell HANDBOOK” VAN NOSTRAND REINHOLD, New York., (1996)
[3]K. Kordesch and G. Simader, “Fuel Cells and Their Applications” VCH, New York, pp. 51-179 (1996).
[4]煜騰、鄭耀宗,質子交換膜型燃料電池的製造技術,能源季刊,第二十七卷,第二期,pp. 118 (1997)。
[5]A. Kazim, “Modeling of performance of PEM fuel cells with conventional and interdigitated flow filed”, Journal of Applied Electrochemistry, Vol. 29, pp.1409-1416 (1999).
[6]D. Singh, D. M. Lu, and N. Djilali, “A two-dimensional analysis of mass transport in proton exchange membrane fuel cells”, International Journal of Engineering Science, Vol. 39, Issue: 3, pp.431-452 (1999).
[7]T. Berning, D. M. Lu, and N. Djilali, “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell”, Journal of Power Sources, Vol. 106, Issue: 1-2 pp.284-294 (2002)
[8]V. Gurau, “Two-dimensional model for proton exchange membrane fuel cells”, AIChE Journal, Vol. 44, No.11, pp. 2410-2422 (1998).
[9]G. Dagan, “Flow and Transport in Porous Formations,” Springer-Verlag, New York (1989).
[10]G. Dagan, “The generalization of Darcy’s law for non-uniform flows”, Water Resources Research, Vol. 15, pp. 1 (1979).
[11]E. Hontañón, M. J. Escudero, C. Bautista, P. L. Garcı´a-Ybarra, and L. Daza,. ”Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques,” Journal of Power Sources, Vol. 86, Issue 1/2, pp. 363 - 368 (2000).
[12]C. Marr and X. Li, “An engineering model of proton exchange membrane fuel cell performance,” ARI, Vol. 50, Issue 4, - pp.190-200 (1998).
[13]C. Marr and X. Li, “Composition and performance modeling of catalyst layer in a proton exchange membrane fuel cell,” Journal of Power Sources, Vol. 77, Issue 1, pp. 17-27, (1999).
[14]C. Marr and X. Li, “Modeling of polymer electrolyte membrane fuel cells with variable degree of water flooding,” Journal of Power Sources, Vol. 86, Issue 1-2, pp.181-196 (2000).
[15]A. Rowe and X. Li, ”Mathematical modeling of proton exchange membrane fuel cells,” Journal of Power Sources, Vol. 102, Issue 1-2 pp. 82-96 (2001).
[16] K. Broka and P. Ekdunge, ”Modelling the PEM fuel cell cathode,” Journal of Applied Electrochemistry, Vol. 27, Issue 3, pp. 281-289 (1997).
[17]G. Maggio, V. Recupero, and L. Pino, “Modeling polymer electrolyte fuel cells: An innovative approach,” Journal of Power Sources, Vol. 101, Issue 2, pp.275-286 (2001).
[18]L. R. Jordan, A. K. Shukla, T. Behrsing, N. R. Avery, B. C. Muddle, and M. Forsyth, “Diffusion layer parameters influencing optimal fuel cell performance,” Journal of Power Sources, Vol. 86, Issue 1/2, pp. 250-254 (2000).
[19]K. Kordesch and G. Simader, “Fuel Cells and Their Applications” VCH, New York, pp.23-50 (1996).
[20]S. Miachon and P. Aldebert “ Internal hydration / 100 polymer electrolyte membrane fuel cell ”, Journal of Power Source, Vol. 56, pp. 31-36 (1995).
[21]J. H. Lee, T. R. Lalk, and A. J. Appleby “Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks”, Journal of Power Source, Vol. 70, pp. 258-268 (1998).
[22]Van Doormaal J.P., Raithby, G.D., “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows”, Numerical Heat Transfer, Vol.7, pp.147-163, 1984.