簡易檢索 / 詳目顯示

研究生: 莊翔宇
Chuang, Hsiang-Yu
論文名稱: 適用於低導電度溶液乙型鏈球菌檢測之核適體篩選研究
Study on Aptamer Selection for Group B Streptococcus Detection in a Low Conductivity Solution
指導教授: 張憲彰
Chang, Hsien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 53
中文關鍵詞: 乙型鏈球菌去氧核酸適體次世代定序分析低導電度電動力學晶片流式細胞儀
外文關鍵詞: Group B streptococcus, DNA aptamer, Next-Generation Sequencing (NGS), Low conductivity, Electrokinetic chip, Flow cytometry
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乙型鏈球菌(Group B Streptococcus; GBS; 學名 Streptococcus agalactiae)是一種常見於人類胃腸道和泌尿生殖道菌相的細菌,對多數成年人來說是無害的,但卻被認為是新生兒感染及死亡的重要原因。根據研究指出大約有20%的婦女帶有GBS,而分娩正是新生兒感染的最大途徑,受GBS感染的新生兒往往會導致嚴重的併發症,如肺炎、腦膜炎及敗血症,即使感染後存活也會有嚴重的神經系統後遺症,因此及早檢測,適當投藥就可以有效降低新生兒感染的風險。根據美國疾病管制局(CDC)的規範,懷孕婦女需在35-37週時進行GBS感染的檢測,而傳統的細菌琣養檢測流程約需3-5天,相當耗時,在新發展的real-time PCR檢測法中為了得到足夠的核酸量也需要一天的細菌培養時間,對於面臨早產的婦女來說,皆無法提供即時的檢測。本實驗室發展已久的環狀指叉型電動力學晶片搭配影像分析技術能夠在低濃度的樣本中,藉由聚集細菌的顆粒來快速量化生菌數,來達成快速檢測的目的,唯其限制需在導電度低於30 μS/cm的環境下使用,因此本研究基於特異性辨識乙型鏈球菌之需求與傳統生產之去氧核酸適體以及抗體於在低導電度環境下會因缺少離子穩定結構,因而降低其效能,利用在低導電度環境中進行系統性配體演化指數擴增法(SELEX)來篩選選出可用於電動力學晶片之去氧核酸適體。本研究經由15輪的篩選後,並藉次世代定序(NGS)分析之結果挑選出現頻率最高之3條DNA序列作為核適體候選者。利用流式細胞儀進行初步功能性分析,結果顯示在核適體濃度1 mM下帶有螢光標定核適體的GBS仍小於5%,雖特異性表現良好,但仍需更多方法評估親和力。未來可對SELEX篩選流程進行修改,並加入於一般導電度下篩選之實驗成果來進行更深入的探討,以及評估於低導電度溶液中篩選核適體之可行性。

    Group B streptococcus (GBS; scientific name Streptococcus agalactiae) is a commensal bacterium of human microbiota that is usually found in gastrointestinal and genitourinary tracts. GBS is usually asymptomatic for adults but is considered to be a necessary reason for newborn infection. According to a previous study, about 20% of women are colonized with GBS and it is the most route of GBS transmission for neonatal infection. Newborns infected with GBS often cause serious complications, such as pneumonia, meningitis, sepsis, and remain neurologic impairment after survival. Therefore, early detection and proper administration can effectively reduce the risk of neonatal infection. According to the Guidelines of the National Center for Disease Control and Prevention (CDC), the optimal timing for prenatal GBS screening is 35 to 37 weeks. The traditional culture testing process takes about 3 to 5 days, which is quite time-consuming. In the newly developed real-time PCR detection method, to obtain a sufficient amount of nucleic acid, it takes 18 to 24 h of bacterial culture time, which cannot provide immediate detection for women who face premature birth. The long-developed ring-shaped interdigital electrokinetic chip combined with image analysis technology in this laboratory can quickly quantify the number of bacteria in a low-concentration sample by collecting bacterial particles to achieve the purpose of rapid detection, but the limitation is that it can only be used in a low-conductivity sample (<30 μS/cm). This study is based on the need to specifically identify GBS and the traditional-produced DNA aptamers and antibodies will lack ions to stabilize its structure in the low conductivity environment, thereby reducing its effectiveness. Systematic ligand evolution index amplification (SELEX) was used in a low-conductivity environment to select DNA aptamers in this study. After 15 rounds of screening and using the next-generation sequencing (NGS) analysis, the three DNA sequences with the highest frequency were selected as aptamer candidates. Preliminary functional analysis using flow cytometry showed that the percentage of fluorescent GBS at aptamer concentration of 1 mM is still less than 5%. Although the specificity is good, more methods are still needed to verify the affinity. In the future, the SELEX process can be modified, and the further discussion could be done by comparing the results of screening GBS aptamer under general conductivity and evaluate the feasibility of screening aptamers in low conductivity solutions.

    Abstract I 中文摘要 II Acknowledgements III Contents IV List of Figures VI List of Tables VIII Chapter 1 Introduction 1 1.1 Epidemic of Group B Streptococcus 1 1.2 Clinical Diagnosis for GBS Infection 2 1.2.1 Plate Culture 2 1.2.2 Chromogenic/Fluorogenic Culture Media 3 1.3 Rapid Screening Techniques 4 1.3.1 Polymerase Chain Reaction 4 1.3.2 Flow Cytometry 5 1.3.3 Microfluidic Systems 7 1.4 Aptamer-based Biosensors 11 1.5 Systematic Evolution of Ligands by Exponential Enrichment (SELEX) 13 1.6 Motivation and Aims 14 Chapter 2 Materials and Methods 15 2.1 Cell Culture and Quantitative 15 2.2 Instruments 15 2.3 Reagents 16 2.4 Systematic Evolution of Ligands by Exponential Enrichment (SELEX) 18 2.4.1 Random Aptamer Library and Primers 18 2.4.2 Aptamer Selection Process 20 2.5 Evaluation of Affinity and Specificity by Flow Cytometry 23 2.6 Conductivity Effect of Aptamer Binding 23 Chapter 3 Results and Discussion 24 3.1 GBS Incubation in 0.1 x Brain Heart Infusion (BHI) 24 3.2 Screening of GBS-specific aptamers by SELEX 25 3.3 Next Generation Sequencing (NGS) Analysis of Cycling-eluted Apatmers 30 3.4 Affinity and Specificity of Aptamer Candidates 34 3.5 Binding Affinity Test in Different Conductivity 36 3.6 Discussion 40 Chapter 4 Conclusion and Prospects 42 Reference 43 Supplementary Tables 47 Personal Information 53

    1. Bagalkot, V., Zhang, L., Levy-Nissenbaum, E., Jon, S., Kantoff, P. W., Langer, R., & Farokhzad, O. C. (2007). Quantum Dot−Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer. Nano Letters, 7(10), 3065-3070.
    2. Berezovski, M., Drabovich, A., Krylova, S. M., Musheev, M., Okhonin, V., Petrov, A., & Krylov, S. N. (2005). Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures: A Universal Tool for Development of Aptamers. Journal of the American Chemical Society, 127(9), 3165-3171.
    3. Bianchi-Jassir, F., Seale, A. C., Kohli-Lynch, M., Lawn, J. E., Baker, C. J., Bartlett, L., Rubens, C. E. (2017). Preterm Birth Associated With Group B Streptococcus Maternal Colonization Worldwide: Systematic Review and Meta-analyses. Clinical Infectious Diseases, 65(suppl_2), S133-S142.
    4. Bosco, A., Camunas-Soler, J., & Ritort, F. (2014). Elastic properties and secondary structure formation of single-stranded DNA at monovalent and divalent salt conditions. Nucleic Acids Research, 42(3), 2064-2074.
    Chien, A., Edgar, D. B., & Trela, J. M. (1976). DNA polymerase from the extreme thermophile Thermus aquaticus. Journal of Bacteriology, 127(3), 1550-1557.
    5. Douglas, E. J., Keith, S. K., & Danie, l. V. L. (1984). GBS Colonization Patterns in Mothers and Their infant. Journal of Clinical Microbiology, 20((3)), 438-440.
    6. Dwivedi, H. P., Smiley, R. D., & Jaykus, L. A. (2013). Selection of DNA aptamers for capture and detection of Salmonella Typhimurium using a whole-cell SELEX approach in conjunction with cell sorting. Applied Microbiolology Biotechnology, 97(8), 3677-3686.
    7. El Aila, N. A., Tency, I., Claeys, G., Saerens, B., Cools, P., Verstraelen, H., . . . Vaneechoutte, M. (2010). Comparison of different sampling techniques and of different culture methods for detection of group B streptococcus carriage in pregnant women. BMC Infectious Diseases, 10, 285-285.
    8. Ellington, A. D., & Szostak, J. W. (1992). Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature, 355(6363), 850-852.
    9. Gou, Y., Jia, Y., Wang, P., & Sun, C. (2018). Progress of Inertial Microfluidics in Principle and Application. Sensors (Basel), 18(6).
    10. Helmig, R. B., & Gertsen, J. B. (2017). Diagnostic accuracy of polymerase chain reaction for intrapartum detection of group B streptococcus colonization. Acta, Obstetricia et Gynecologica Scandinavica 96(9), 1070-1074.
    11. Homann, M., & Göringer, H. U. (1999). Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Research, 27(9), 2006-2014.
    12. Kohli-Lynch, M., Russell, N. J., Seale, A. C., Dangor, Z., Tann, C. J., Baker, C. J., Lawn, J. E. (2017). Neurodevelopmental Impairment in Children After Group B Streptococcal Disease Worldwide: Systematic Review and Meta-analyses. Clinical Infectious Diseases, 65(suppl_2), S190-S199.
    13. Lee, K. H., & Zeng, H. (2017). Aptamer-Based ELISA Assay for Highly Specific and Sensitive Detection of Zika NS1 Protein. Analytical Chemistry, 89(23), 12743-12748.
    14. Li, W., Wang, S., Zhou, L., Cheng, Y., & Fang, J. (2019). An ssDNA aptamer selected by Cell-SELEX for the targeted imaging of poorly differentiated gastric cancer tissue. Talanta, 199, 634-642.
    15. Lim, J., Choi, M., Lee, H., Kim, Y. H., Han, J. Y., Lee, E. S., & Cho, Y. (2019). Direct isolation and characterization of circulating exosomes from biological samples using magnetic nanowires. Journal of Nanobiotechnology, 17(1), 1.
    16. Liu, J., & Lu, Y. (2006). Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angewandte Chemie International Edition, 45(1), 90-94.
    17. Lu, J., Pang, J., Chen, Y., Dong, Q., Sheng, J., Luo, Y., . . . Liu, T. (2019). Application of Microfluidic Chips in Separation and Analysis of Extracellular Vesicles in Liquid Biopsy for Cancer. Micromachines (Basel), 10(6).
    18. Marton, S., Cleto, F., Krieger, M. A., & Cardoso, J. (2016). Isolation of an Aptamer that Binds Specifically to E. coli. PLOS ONE, 11(4), e0153637.
    19. Montague, N. S., Cleary, T. J., Martinez, O. V., & Procop, G. W. (2008). Detection of group B streptococci in Lim broth by use of group B streptococcus peptide nucleic acid fluorescent in situ hybridization and selective and nonselective agars. Journal of Clinical Microbiology, 46(10), 3470-3472.
    20. Nan, C., Dangor, Z., Cutland, C. L., Edwards, M. S., Madhi, S. A., & Cunnington, M. C. (2015). Maternal group B Streptococcus-related stillbirth: a systematic review. BJOG : An International Journal of Obstetrics and Gynaecology, 122(11), 1437-1445.
    21. Ouellet, E., Foley, J. H., Conway, E. M., & Haynes, C. (2015). Hi-Fi SELEX: A high-fidelity digital-PCR based therapeutic aptamer discovery platform. Biotechnology and Bioengineering, 112(8), 1506-1522.
    22. Picot, J., Guerin, C. L., Le Van Kim, C., & Boulanger, C. M. (2012). Flow cytometry: retrospective, fundamentals and recent instrumentation. Cytotechnology, 64(2), 109-130.
    23. Radi, A. E., & O'Sullivan, C. K. (2006). Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. Chemical Communications (Camb)(32), 3432-3434.
    24. Ramos, A., Gonzalez, A., Castellanos, A., Green, N. G., & Morgan, H. (2003). Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Physical review. E, Statistical, nonlinear, and soft matter physics , 67(5 Pt 2), 056302.
    25. Salari, A., & Thompson, M. (2018). Recent advances in AC electrokinetic sample enrichment techniques for biosensor development. Sensors and Actuators B: Chemical, 255, 3601-3615.
    26. Seale, A. C., Bianchi-Jassir, F., Russell, N. J., Kohli-Lynch, M., Tann, C. J., Hall, J., Lawn, J. E. (2017). Estimates of the Burden of Group B Streptococcal Disease Worldwide for Pregnant Women, Stillbirths, and Children. Clinical Infectious Diseases, 65(suppl_2), S200-S219.
    26. Seale, A. C., Blencowe, H., Bianchi-Jassir, F., Embleton, N., Bassat, Q., Ordi, J., Madhi, S. A. (2017). Stillbirth With Group B Streptococcus Disease Worldwide: Systematic Review and Meta-analyses. Clinical Infectious Diseases, 65(suppl_2), S125-S132.
    27. Sharkey, D. J., Scalice, E. R., Jr., K. G. C., Atwood., S. M., & Daiss., J. L. (1994). Antibodies as Thermolabile Switches- High Temperature Triggering for the PCR. Bio/Technology volume, 12, 506-509.
    28. Song, M. Y., Nguyen, D., Hong, S. W., & Kim, B. C. (2017). Broadly reactive aptamers targeting bacteria belonging to different genera using a sequential toggle cell-SELEX. Scientific Reports, 7, 43641-43641.
    29. Song, S., Wang, L., Li, J., Fan, C., & Zhao, J. (2008). Aptamer-based biosensors. TrAC Trends in Analytical Chemistry, 27(2), 108-117.
    30. Song, S. P., Wang, L. H., Li, J., Zhao, J. L., & Fan, C. H. (2008). Aptamer-based biosensors. Trac-Trends in Analytical Chemistry, 27(2), 108-117.
    31. Suh, S. H., Dwivedi, H. P., Choi, S. J., & Jaykus, L. A. (2014). Selection and characterization of DNA aptamers specific for Listeria species. Analytical Biochemistry, 459, 39-45.
    32. Syverud, B. C., Lin, E., Nagrath, S., & Larkin, L. M. (2018). Label-Free, High-Throughput Purification of Satellite Cells Using Microfluidic Inertial Separation. Tissue Eng Part C Methods, 24(1), 32-41.
    33. Tann, C. J., Martinello, K. A., Sadoo, S., Lawn, J. E., Seale, A. C., Vega-Poblete, M., Group, G. B. S. N. E. I. (2017). Neonatal Encephalopathy With Group B Streptococcal Disease Worldwide: Systematic Review, Investigator Group Datasets, and Meta-analysis. Clinical Infectious Diseases, 65(suppl_2), S173-S189.
    34. Tuerk, C., & Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249(4968), 505.
    35. Wei, H., Li, B., Li, J., Wang, E., & Dong, S. (2007). Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chemical Communications (36), 3735-3737.
    36. Wheeler, T. J., & Kececioglu, J. D. (2007). Multiple alignment by aligning alignments. Bioinformatics, 23(13), i559-i568.
    37. Woo, H. K., Sunkara, V., Park, J., Kim, T. H., Han, J. R., Kim, C. J., Cho, Y. K. (2017). Exodisc for Rapid, Size-Selective, and Efficient Isolation and Analysis of Nanoscale Extracellular Vesicles from Biological Samples. ACS Nano, 11(2), 1360-1370.
    38. Wu, C.-C., Huang, W.-C., & Hu, C.-C. (2015). An ultrasensitive label-free electrochemical impedimetric DNA biosensing chip integrated with a DC-biased AC electroosmotic vortex. Sensors and Actuators B: Chemical, 209, 61-68.
    39. Wu, J. T., Du, J. R., Juang, Y. J., & Wei, H. H. (2007). Rectified elongational streaming due to asymmetric electro-osmosis induced by ac polarization. Applied Physics Letters 90(13), 134103.
    40. Wu, M., Ouyang, Y., Wang, Z., Zhang, R., Huang, P. H., Chen, C., Li H., Li P., Quinn D., Dao M., Suresh S., Sadovsky Y. & Huang, T. J. (2017). Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proceedings of the National Academy of Sciences of the United States of America, 114(40), 10584-10589.
    41. Xiao, Y., Lubin, A. A., Heeger, A. J., & Plaxco, K. W. (2005). Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angewandte Chemie-International Edition, 44(34), 5456-5459.
    42. Yu, X., Chen, F., Wang, R., & Li, Y. (2018). Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor. Journal of Biotechnology, 266, 39-49.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE