簡易檢索 / 詳目顯示

研究生: 黃祥祐
Huang, Hsiang-Yu
論文名稱: 弧形前壁面之凹槽駐焰器流場研究
Investigation of the Flow Field Characteristics Induced by Curved Front Wall in a Cavity Flame Holder
指導教授: 袁曉峰
Yuan, Hsiao-Feng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 123
中文關鍵詞: 反射式震波風洞粒子影像測速系統凹槽駐焰器
外文關鍵詞: Reflected Shock Tunnel, Particle Image Velocimetry, Cavity Flameholder
相關次數: 點閱:17下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討弧形前壁面構型對於凹槽駐焰器流場特性的影響。凹槽駐焰器因能有效產生低速迴流區,提升燃料混合與火焰穩定性,廣泛應用於超音速燃燒推進系統中。過去研究多聚焦於長深比與後壁面斜角等幾何參數,對前壁面設計之探討則相對有限。為此,本研究設計兩種凹槽構型,分別為具垂直前壁面之基礎型凹槽,以及具弧形前壁面之前弧型凹槽,進行流場觀測與性能比較。實驗利用反射式震波風洞搭配粒子影像測速技術(PIV),在馬赫數2的自由流條件下,量測凹槽內的瞬時速度場,以探討弧形前壁面設計對凹槽內部流場結構與低速迴流區特性的影響。
    研究結果顯示,基礎型構型之剪切層受槽內壓力震盪影響,易產生上下擺動,導致低速迴流結構不穩定;反之,弧形前壁面則可有效降低剪切層擺動並引導其深入槽底,使低速迴流呈現穩定且完整之主迴流結構。進一步比較性能指標發現,剪切層深入槽內可提升迴流區平均渦度,雖縮小迴流面積並限制環流量,但經評估可推測其不致降低迴流與剪切層之間的質量交換,甚至能強化剪切層將主流氣流導入迴流區內部的趨勢,促進主流與低速迴流之間的循環與交換,進而提升燃燒效率與穩定性。
    綜合而言,弧形前壁面的設計能穩定促進剪切層深入槽內,形成完整且高渦度的主迴流,對燃料混合產生潛在助益。並且依據邊界速度分析,可推論此構型有助於提升將剪切層上之新鮮空氣輸送至低速迴流區內部的能力,強化迴流區與主流間的循環與交換。

    This study examines the impact of a curved front wall configuration on the flow characteristics of cavity flameholders. Cavity flameholders are widely used in supersonic combustion systems to enhance fuel–air mixing and stabilize flames through low-speed recirculation. Prior research has primarily emphasized geometric parameters like length-to-depth ratio or aft wall angle, with limited focus on front wall design. To bridge this gap, this study compares two cavity configurations—a baseline with a vertical front wall and a modified version with a curved front wall—via flow field observation and performance analysis. Experiments were performed in a reflected shock tunnel using Particle Image Velocimetry (PIV) under Mach 2 free-stream conditions to capture instantaneous velocity fields within the cavity.
    Results show that the baseline cavity exhibits unsteady shear layer motions, driven by pressure oscillations, leading to fragmented and unstable recirculation structures. In contrast, the curved front wall suppresses these oscillations, guiding the shear layer deeper into the cavity and forming a stable, complete primary recirculation structure. Performance analysis indicates that while deeper shear layer penetration reduces recirculation zone size, it increases the mean vorticity. Moreover, the enhanced boundary velocity in y-direction further suggests a stronger ability to entrain fresh air into the recirculation zone, thereby improving the exchange between the mainstream and the recirculation zone.
    Overall, the curved front wall design demonstrates a significant potential to promote stable shear-layer penetration, strengthen recirculation dynamics, and enhance fuel–air mixing, offering clear advantages for flameholder applications in supersonic combustion.

    摘要 I 誌謝 XI 目錄 XIV 表目錄 XVIII 圖目錄 XIX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 凹槽駐焰器 3 1.2.2 長深比對凹槽駐焰器的影響 4 1.2.3 後斜壁面對凹槽駐焰器的影響 5 1.2.4 前壁面對凹槽駐焰器的影響 6 1.2.5 凹槽駐焰器的三維效應 8 1.2.6 粒子影像測速系統(PIV)之發展歷程與基本原理 9 1.2.7 PIV於超音速流場中的應用挑戰–示蹤粒子選擇 10 1.2.8 PIV於超音速流場中的應用挑戰–示蹤粒子噴注 11 1.2.9 PIV於超音速流場中的應用挑戰–雷射與影像擷取 12 1.2.10 PIV之影像後處理工具 14 1.3 研究動機與目的 15 第二章 實驗設備與研究方法 18 2.1 反射式震波風洞 18 2.1.1 震波風洞運作過程 20 2.1.2 震波風洞氣動力理論 22 2.1.3 震波風洞氣源系統 29 2.1.4 震波風洞控制系統 30 2.2 粒子影像測速系統 31 2.2.1 粒子噴注系統 31 2.2.2 雷射光路與影像擷取系統 37 2.2.3 訊號同步系統 41 2.2.4 PIV數據後處理 44 2.2.5 震波風洞PIV實驗流程 47 2.3 模型設計 48 2.3.1 凹槽長深比設定 50 2.3.2 寬深比設定 51 2.3.3 凹槽深度設定 53 2.3.4 後斜壁面角度設定 55 2.3.5 前弧壁面幾何設定 56 2.4 流場分析方法 59 2.4.1 低速迴流區域及邊界定義 60 2.4.2 渦度分析 62 2.4.3 環流分析 62 2.4.4 剪切層分析 - Q criterion 64 2.4.5 迴流邊界速度分析 66 第三章 結果與討論 67 3.1 基礎型凹槽駐焰器之流場結構探討 67 3.1.1 全域速度向量分布 67 3.1.2 剪切層分析 69 3.1.3 低速迴流區速度向量分析 72 3.2 前弧型凹槽駐焰器之流場結構探討 75 3.2.1 全域速度向量分布 75 3.2.2 剪切層分析 77 3.2.3 低速迴流區速度向量分析 81 3.3 各構型低速迴流區之性能分析對比 84 3.3.1 平均渦度分析 85 3.3.2 低速迴流面積分析 87 3.3.3 環流量分析 89 3.3.4 駐焰器質量交換性能評估 91 第四章 結論 94 第五章 未來工作 96 參考文獻 97

    [1] 林宥騰, "凹槽駐焰器於超音速燃燒流場之設計與分析," 國立成功大學航空太空工程學系博士論文, 2022.
    [2] 張維軒, "支架於超音速流場之噴注特性觀察," 航空太空工程學系, 國立成功大學, 2020.
    [3] 陳冠維, "粒子影像測速儀建置應用於超音速凹槽駐焰器流場量測," 航空太空工程學系, 國立成功大學, 2022.
    [4] S. Roudakov A, "Flight testing an axisymmetric scramjet - Russian recent advances," 44^<th> IAF Congress, 1993.
    [5] A. Ben-Yakar and R. K. Hanson, "Cavity flame-holders for ignition and flame stabilization in scramjets: an overview," Journal of propulsion and power, vol. 17, no. 4, pp. 869-877, 2001.
    [6] 廖致鈞, "超音速流場中不同後壁角度與長深比之凹槽駐焰器構型流場分析," 航空太空工程學系, 國立成功大學, 2023.
    [7] X. Zhang, A. Rona, and J. A. Edwards, "The effect of trailing edge geometry on cavity flow oscillation driven by a supersonic shear layer," The aeronautical journal, vol. 102, no. 1013, pp. 129-136, 1998.
    [8] M. Gruber, R. Baurle, T. Mathur, and K.-Y. Hsu, "Fundamental studies of cavity-based flameholder concepts for supersonic combustors," Journal of Propulsion and power, vol. 17, no. 1, pp. 146-153, 2001.
    [9] W. O. Landsberg and A. Veeraragavan, "Inclining and aerodynamically contouring a scramjet cavity's upstream wall," Aerospace Science and Technology, vol. 95, p. 105490, 2019.
    [10] M. A. Trudgian, W. O. Landsberg, and A. Veeraragavan, "Experimental investigation of inclining the upstream wall of a scramjet cavity," Aerospace Science and Technology, vol. 99, p. 105767, 2020.
    [11] W. O. Landsberg, D. Curran, and A. Veeraragavan, "Experimental flameholding performance of a scramjet cavity with an inclined front wall," Aerospace Science and Technology, vol. 126, p. 107622, 2022.
    [12] 馮品翰, "超音速流場中不同前壁面角度之凹槽駐焰器構型流場分析," 航空太空工程學系, 國立成功大學, 2024.
    [13] C.-h. Woo, J.-s. Kim, and K.-h. Lee, "Three-dimensional effects of supersonic cavity flow due to the variation of cavity aspect and width ratios," Journal of mechanical science and technology, vol. 22, no. 3, pp. 590-598, 2008.
    [14] R. Das, H.-D. Kim, and J. Kurian, "Experimental study of supersonic entrainment using a cavity," Journal of Propulsion and Power, vol. 30, no. 5, pp. 1143-1151, 2014.
    [15] S. Scharnowski and C. J. Kähler, "Particle image velocimetry-classical operating rules from today’s perspective," Optics and Lasers in Engineering, vol. 135, p. 106185, 2020.
    [16] O. J. Williams, T. Nguyen, A.-M. Schreyer, and A. J. Smits, "Particle response analysis for particle image velocimetry in supersonic flows," Physics of Fluids, vol. 27, no. 7, 2015.
    [17] M. Samimy and S. Lele, "Motion of particles with inertia in a compressible free shear layer," Physics of Fluids A: Fluid Dynamics, vol. 3, no. 8, pp. 1915-1923, 1991.
    [18] C. Moraitis and G. Simeonides, "Application of particle image velocimetry to hypersonic flows: Perspectives and impedimenta," in International Congress on Instrumentation in Aerospace Simulation Facilities, 1993: IEEE, pp. 41_1-41_5.
    [19] A. Melling, "Tracer particles and seeding for particle image velocimetry," Measurement science and technology, vol. 8, no. 12, p. 1406, 1997.
    [20] W. D. Urban and M. Mungal, "Planar velocity measurements in compressible mixing layers," Journal of Fluid Mechanics, vol. 431, pp. 189-222, 2001.
    [21] M. Havermann, J. Haertig, C. Rey, and A. George, "PIV measurements in shock tunnels and shock tubes," in Particle Image Velocimetry: New Developments and Recent Applications: Springer, 2008, pp. 429-443.
    [22] B. E. Rice, C. P. Goyne, and J. C. McDaniel, "Seeding bias in particle image velocimetry applied to dual-mode scramjet," Journal of Propulsion and Power, vol. 31, no. 5, pp. 1393-1403, 2015.
    [23] H. Weisgerber, R. Martinuzzi, U. Brummund, and P. Magre, "PIV measurements in a Mach 2 hydrogen-air supersonic combustion," in 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference, 2001, p. 1757.
    [24] A. Bouhanguel, P. Desevaux, Y. Bailly, and L. Girardot, "Particle image velocimetry in a supersonic air ejector," in 15th International Symposium on Flow Visualization ISFV15, Minsk, 2012.
    [25] W. Thielicke and R. Sonntag, "Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. J. Open Res. Software 9, 12," ed, 2021.
    [26] G. Choubey, M. Solanki, O. Patel, Y. Devarajan, and W. Huang, "Effect of different strut design on the mixing performance of H2 fueled two-strut based scramjet combustor," Fuel, vol. 351, p. 128972, 2023.
    [27] Y. Zhao, J. Liang, and Y. Zhao, "Non-reacting flow visualization of supersonic combustor based on cavity and cavity–strut flameholder," Acta Astronaut, vol. 121, pp. 282-291, 2016.
    [28] S. G. Tuttle, C. D. Carter, and K.-Y. Hsu, "Particle image velocimetry in a nonreacting and reacting high-speed cavity," Journal of Propulsion and Power, vol. 30, no. 3, pp. 576-591, 2014.
    [29] 陳一辛, "凹槽構型對超音速駐焰燃燒之影響," 航空太空工程學系, 國立成功大學, 2023.
    [30] R. Zhang and W. Fan, "Flow field measurements in the cavity of a trapped vortex combustor using PIV," Journal of Thermal Science, vol. 21, no. 4, pp. 359-367, 2012.
    [31] H. Wang, P. Li, M. Sun, and J. Wei, "Entrainment characteristics of cavity shear layers in supersonic flows," Acta Astronaut, vol. 137, pp. 214-221, 2017.
    [32] N. Zhuang, F. Alvi, and C. Shih, "Another look at supersonic cavity flows and their control," in 11th AIAA/CEAS Aeroacoustics Conference, 2005, p. 2803.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE