簡易檢索 / 詳目顯示

研究生: 卓哲宇
Cho, Tse-Yu
論文名稱: 單壁奈米碳管的振動與波傳
Vibration and Wave Propagation of Single-Walled Carbon Nanotubes
指導教授: 蘇于琪
Su, Yu-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 93
中文關鍵詞: 單壁奈米碳管非局部Timoshenko梁虛位移原理射線法模態疊加法自由振動暫態波傳
外文關鍵詞: single-walled carbon nanotube, nonlocal Timoshenko beam, principle of virtual displacements, ray method, normal mode method, free vibration, transient responses
相關次數: 點閱:112下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文對彈性介質內嵌入的單壁奈米碳管(single-walled carbon nanotube, SWCNT)在簡支與懸臂邊界上進行完整的力學分析。基於連體力學理論,以非局部Timoshenko梁建構理論模型,並以Winkler彈性支承模擬SWCNT與周圍介質間的作用力。在SWCNT自然振動行為中,基於虛位移原理(principle of virtual displacements, PVD)推導其弱形式方程式,並應用有限元素法與解析解做驗證,根據自然頻率的變化探討非局部效應對不同參數(模態、螺旋性、長徑比與周圍介質勁度)SWCNT造成的影響。在嵌入式Armchair (18,18) SWCNT受到外力的波傳行為中,建立射線法理論架構解得其轉換域下的理論解,並透過Durbin數值逆轉換求解時域下的暫態反應解,另一方面,應用模態疊加法將振動行為結果延伸至探討SWCNT的波傳行為,其反應解包含解析與數值解。將以上三種暫態結果相互比較驗證,得知,非局部效應使波傳反應變得平滑,且量測點未接收到波源傳遞便受到整體結構波傳作用而產生反應。

    Dynamic behaviors of single-walled carbon nanotube (SWCNT) embedded in an elastic medium are studied on the basis of the nonlocal Timoshenko beam model. Free vibration of SWCNT is analyzed and verified by numerical and theoretical methods. Influences of the slender ratios, the boundary conditions, the atomic structures, and the stiffness of the embedded medium on the natural frequencies and mode shapes of SWCNT are also examined. In transient analysis, we use ray and normal mode approaches. The results are in good agreement. The nonlocal effect smooths the transient responses, Different from classical Timoshenko beam, the nonlocal Timoshenko beam model shows instantaneous wave propagation owing to the nonlocal effect.

    摘要 I Extended Abstract II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 符號表 XIV 第一章 緒論 1 1-1 文獻回顧 1 1-2 本文架構 5 第二章 奈米碳管的結構性質 6 第三章 SWCNT振動行為分析 8 3-1 Eringen非局部彈性理論 8 3-2 SWCNT控制方程式 9 3-3 SWCNT自由振動理論解 13 3-4 SWCNT自由振動數值解 22 第四章 SWCNT波傳行為分析 25 4-1 射線法 25 4-1-1 轉換域下的射線解 26 4-1-2 Durbin數值逆轉換 37 4-2 模態疊加法 41 4-2-1 時間函數求解 42 4-2-2 SWCNT的暫態理論解 46 4-2-3 SWCNT的暫態數值解 48 第五章 數值結果討論 49 5-1 SWCNT自由振動結果分析 49 5-2 SWCNT波傳行為結果分析 68 5-2-1 SWCNT在簡支邊界上的暫態反應 68 5-2-2 SWCNT在懸臂邊界上的暫態反應 70 第六章 結論與未來研究方向 86 6-1 結論 86 6-2 未來研究方向 87 參考文獻 88

    [1] S. Iijima, Helical microtubules of graphitic carbon. Nature, Vol. 354, 56-58, 1991.
    [2] P. Mukhopadhyay, R.K. Gupta, Graphite, graphene, and their polymer nanocomposites. CRC Press, 2012.
    [3] Y. Li, Y. Sun, J.T.W. Yeow, Nanotube field electron emission: principles, development, and applications. Nanotechnology, Vol. 26, 242001, 2015.
    [4] W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, Vol. 69, 1486-1498, 2009.
    [5] F.H. Gojny, M.H.G. Wichmann, U. Kopke, B. Fiedler, K. Schulte, Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Composites Science and Technology, Vol. 64, 2363-2371, 2004.
    [6] S.R. Bakshi, A. Agarwal. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon, Vol. 49, 533-544, 2011.
    [7] A. Beigbeder, P. Degee, S.L. Conlan, R.J. Mutton, A.S. Clare, M.E. Pettitt, M.E. Callow, J.A.Callow, P. Dubois, Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings. Biofouling, Vol. 24, 291-302, 2008.
    [8] C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng, M.S. Dresselhaus, Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, Vol. 286, 1127-1129, 1999.
    [9] C.R. Martin, P. Kohli, The emerging field of nanotube biotechnology. Nature Reviews Drug Discovery, Vol. 2, 29-37, 2003.
    [10] S. Iijima, C. Brabec, A. Maiti, J. Bernholc, Structural flexibility of carbon nanotubes. Journal of Chemical Physics, Vol. 104, 2089-2092, 1996.
    [11] Z. Yao, C.C. Zhu, M. Cheng, J. Liu, Mechanical properties of carbon nanotube by molecular dynamics simulation. Computational Materials Science, Vol. 22, 180-184, 2001.
    [12] W.H. Duan, C.M. Wang, Y.Y. Zhang, Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. Journal of Applied Physics, Vol. 101, 024305, 2006.
    [13] A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity. International Journal of Engineering Science, Vol. 10, 233-248, 1972.
    [14] A.C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves. International Journal of Engineering Science, Vol. 10, 425-435, 1972.
    [15] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, Vol. 54, 4703-4710, 1983.
    [16] L. Boumia, M. Zidour, A. Benzair, A.Tounsi, A Timosheno beam model for vibration analysis of chiral single-walled carbon nanotubes. Physica E, Vol. 59, 186-191, 2014.
    [17] A. Benzair, A. Tounsi, A. Besseghier, H. Heireche, N. Moulay, L. Boumia, The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Journal of Physics D: Applied Physics, Vol. 41, 225404, 2008.
    [18] J.N. Reddy, S.D. Pang, Nonlocal continuum theories of beams for the analysis of carbon nanotubes. Journal of Applied Physics, Vol. 103, 023511, 2008.
    [19] X.W. Lei, T. Natsuki, J.X. Shi, Q.Q. Ni, Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Composites Part B: Engineering, Vol. 43, 64-69, 2012.
    [20] T. Murmu, S.C. Pradhan, Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Computational Materials Science, Vol. 46, 854-859, 2009.
    [21] C.P. Wu, W.W. Lai, Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method. Physica E: Low-dimensional Systems and Nanostructures, Vol. 68, 8-21, 2015.
    [22] Q. Wang, Wave propagation in carbon nanotubes via nonlocal continuum mechanics. Journal of Applied physics, Vol. 98, 124301, 2005.
    [23] S. Narendar, S. Gopalakrishnan, Nonlocal scale effects on wave propagation in multi-walled carbon nanotubes. Computational Materials Science, Vol. 47, 526-538, 2009.
    [24] H. Heireche, A. Tounsi, A. Benzair, Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading. Nanotechnology, Vol. 19, 185703, 2008.
    [25] H. Heireche, A. Tounsi, A. Benzair, M. Maachou, E.A. Adda Bedia, Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity. Physica E: Low-dimensional Systems and Nanostructures, Vol. 40, 2791-2799, 2008.
    [26] H. Heireche, A. Tounsi, A. Benzair, I. Mechab, Sound wave propagation in single-walled carbon nanotubes with initial axial stress. Journal of Applied Physics, Vol. 104, 014301, 2008.
    [27] M. Malikan, R. Dimitri, F. Tornabene, Transient response of oscillated carbon nanotubes with an internal and external damping. Composites Part B: Engineering, Vol. 158, 198-205, 2019.
    [28] L. Wang, H. Hu, Flexural wave propagation in single-walled carbon nanotubes. Physical Review B, Vol. 71, 195412, 2005.
    [29] Y. G. Hu, K.M. Liew, Q. Wang, Nonlocal elastic beam models for flexural wave propagation in double-walled carbon nanotubes. Journal of Applied Physics, Vol. 106, 044301, 2009.
    [30] Y.C. Su, C.C. Ma, Theoretical analysis of transient waves in a simply-supported Timoshenko beam by ray and normal mode methods. International Journal of Solids and Structures, Vol. 48, 535-552, 2011.
    [31] Y.C. Su, C.C. Ma, Transient wave analysis of a cantilever Timoshenko beam subjected to impact loading by Laplace transform and normal mode methods. International Journal of Solids and Structures, Vol. 49, 1158-1176, 2012.
    [32] H. Hassanzadeh, M. P. Darvish, Comparison of different numerical Laplace inversion methods for engineering applications. Applied Mathematics and Computation, Vol. 189, 1966-1981, 2007.
    [33] H. Dubner, J. Abate, Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. Journal of the Association for Computing Machinery, Vol. 15, 115-123, 1968.
    [34] D.P. Gaver, Jr. Observing Stochastic Processes, and Approximate Transform Inversion. Operations Research, Vol. 14, 444-459, 1966.
    [35] V. Zakian, Numerical inversion of Laplace transform. Electronics Letters, Vol. 5, 120-121, 1969.
    [36] R.A. Schapery, Approximate methods of transform inversion for viscoelastic stress analysis. Proceedings of the fourth U.S. National Congress of Applied Mechanics, Vol. 2, 1075-1085, 1962.
    [37] F. Durbin, Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. The Computer Journal, Vol. 17, 371-376, 1974.
    [38] S.M. Han, H. Benaroya, T. Wei, Dynamics of transversely vibrating beams using four engineering theories. Journal of Sound and Vibration, Vol. 225, 935-988, 1999.
    [39] N.F.J. van Rensburg, A.J. van der Merwe, Natural frequencies and modes of a Timoshenko beam. Wave Motion, Vol. 44, 58-69, 2006.
    [40] M. Meo, M. Rossi, Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Composites Science and Technology, Vol. 66, 1597-1605, 2006.
    [41] J.W.G. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature, Vol. 391, 59-62, 1998.
    [42] M. Mirramezani, H.R. Mirdamadi, The effects of Knudsen-dependent flow velocity on vibrations of a nano-pipe conveying fluid. Archive of Applied Mechanics, Vol. 82, 879-890, 2011.
    [43] I.L. Chang, Molecular dynamics investigation of carbon nanotube resonance. Modelling and Simulation in Materials Science and Engineering, Vol. 21, 045011, 2013.
    [44] I.L. Chang, C.M. Huang, Vibrational behavior of single-walled carbon nanotubes: atomistic simulations. Japanese Journal of Applied Physics, Vol. 52, 105101, 2013.
    [45] Q. Wang, Wave propagation in carbon nanotubes via nonlocal continuum mechanics. Journal of Applied Physics, Vol. 98, 124301, 2005.
    [46] G.R. Cowper, The shear coefficient in Timoshenko’s Beam Theory. Journal of Applied Mechanics, Vol. 33, 335-340, 1966.
    [47] J.N. Reddy, Energy and variational methods in applied mechanics. Wiley-Interscience Publication, New York, 1984.
    [48] J.N. Reddy, An introduction to the finite element method. McGraw-Hill Book Company, New York, 1984.
    [49] G.S. Lee, C.C. Ma, Transient elastic waves propagating in a multi-layered medium subjected to in-plane dynamic loadings I. Theory. Proceedings of the Royal Society A, Vol. 456, 1355-1374, 2000.
    [50] W. X. Bao, C.C. Zhu, W.Z. Cui, Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics. Physica B, Vol. 352, 156-163, 2004.
    [51] C.P. Wu, C.H. Lin, Y.M. Wang, Nonlinear finite element analysis of a multiwalled carbon nanotube resting on a Pasternak foundation. Mechanics of Advanced Materials and Structures, Vol. 26, 1505-1517, 2018.

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE