| 研究生: |
陳力嘉 Chen, Li-Jia |
|---|---|
| 論文名稱: |
應用非對稱對沖流火焰於甲烷火焰對氨火焰之數值研究 Numerical study of the asymmetrical counter flame for methane/air versus ammonia/air |
| 指導教授: |
吳志勇
Wu, Chih-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 對沖流火焰 、預混火焰 、氨燃燒 |
| 外文關鍵詞: | opposed-flow, premix flame, ammonia combustion |
| 相關次數: | 點閱:113 下載:22 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中以甲烷預混火焰與氨預混火焰以非對稱對沖流(asymmertic counterflow premixed)火焰燃燒之方法,計算並且分析甲烷火焰之後火焰中中間產物對於氨火焰燃燒機制之影響。現今大部分作為能源之燃料均為石化燃料,這些化石燃料所產生之溫室氣體對於環境之影響日益嚴重,故降低碳排放量亦為新型綠色能源必備條件,而氨(Ammonia)作為無碳之氫能量載體,有著較高之氫含量,完全燃燒狀態下只會產生水以及氮,且與氫氣相比有著較低之運送成本以及安全性,但是氨做為能源還是有著幾項挑戰,其狹窄之可燃範圍、低易燃性等等。而本研究之目的即為以甲烷火焰在燃燒後生成之活性基以及熱釋放透過擴散至氨火焰側對氨火焰之燃燒機制進行改善,並計算出在不同當量比燃燒情況下,其火焰結構將以何種趨勢進行改變,並在最終達到改善氨火焰之目的。使用數值分析軟體CHEMKIN Pro 進行火焰結構分析,以對沖流火焰模組計算出兩側分別為甲烷空氣預混火焰以及氨空氣預混火焰中之火焰結構,將以物種濃度分布、反應路徑圖、生成率分析、靈敏性分析、NO生成分析對於結果進行討論,根據以上分析對於同當量比條件下氨火焰結構之影響,相信根據本論文將能更為深入了解氨火焰其中之燃燒機制並且達到其作為新型綠色能源之目的。
In the present study, the counterflow premixed methane/air versus ammonia/air flames was numerically studied by the ChemKin package. The equivalence ratio of the methane/air premixed flame was kept constant, and thermal conduction, radical diffusion, and the significant species flux assisted ammonia/air premixed mixture in burning. The flame structures in terms of temperature, reaction rates, and species distribution were analyzed in this study.
[1] "Global Greenhouse Gas Emissions" (2010,May,10)[online],Availabe https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data
[2] "Climate change: Emissions edge up despite drop in coal." (2019,June,20)[online],Availabe https://www.bbc.com/news/science-environment-50648495
[3] T. Okanishi et al., "Comparative Study of Ammonia-fueled Solid Oxide Fuel Cell Systems," Fuel Cells, vol. 17, no. 3, pp. 383-390, 2017/06/12
[4] H. Kobayashi, A. Hayakawa, K. D. Kunkuma A. Somarathne, and Ekenechukwu C. Okafor, "Science and technology of ammonia combustion," Proceedings of the Combustion Institute, vol. 37, no. 1, pp. 109-133, 2019/02/22
[5] "Leaf-nosed bat," in Encyclopædia Britannica, ed: Encyclopædia Britannica Online, 2009.
[6] F.-H. Wu and G.-B. Chen, "Numerical study of hydrogen peroxide enhancement of ammonia premixed flames," Energy, vol. 209, p. 118118, 2020/10/11/ 2020.
[7] Ø. Skreiberg, P. Kilpinen, and P. Glarborg, "Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor," Combustion and Flame, vol. 136, no. 4, pp. 501-518, 2004/03/12
[8] J. A. Miller, M. D. Smooke, R. M. Green, and R. J. Kee, "Kinetic Modeling of the Oxidation of Ammonia in Flames," Combustion Science and Technology, vol. 34, no. 1-6, pp. 149-176, 1983/10/09
[9] J. Bozzelli and A. Dean, "Combustion chemistry of nitrogen," Combustion Chemistry, 1979/05/20
[10] C. Duynslaegher, F. Contino, J. Vandooren, and H. Jeanmart, "Modeling of ammonia combustion at low pressure," Combustion and Flame, vol. 159, no. 9, pp. 2799-2805, 2012/09/08
[11] C. K. Law, Combustion Physics. Cambridge: Cambridge University Press, 2006/04/13.
[12] N. A. Hussein, A. Valera-Medina, and A. S. Alsaegh, "Ammonia- hydrogen combustion in a swirl burner with reduction of NOx emissions," Energy Procedia, vol. 158, pp. 2305-2310, 2019/02/12/
[13] J. W. Ku, S. Choi, H. K. Kim, S. Lee, and O. C. Kwon, "Extinction limits and structure of counterflow nonpremixed methane-ammonia/air flames," Energy, vol. 165, pp. 314-325, 2018/12/18/
[14] J. W. Ku, Y. J. Ahn, H. K. Kim, Y. H. Kim, and O. C. Kwon, "Propagation and emissions of premixed methane-ammonia/air flames," Energy, vol. 201, p. 117632, 2020/06/14/
[15] T. Mendiara and P. Glarborg, "Ammonia chemistry in oxy-fuel combustion of methane," Combustion and Flame, vol. 156, no. 10, pp. 1937-1949, 2009/10/04/
[16] A. G. Shmakov et al., "Formation and consumption of NO in H2 + O2 + N2 flames doped with NO or NH3 at atmospheric pressure," Combustion and Flame, Article vol. 157, no. 3, pp. 556-565, 2010, 10.1016combustflame.2009.10.008.
[17] W. B. Lowry, Z. Serinyel, M. C. Krejci, H. J. Curran, G. Bourque, and E. L. Petersen, "Effect of methane-dimethyl ether fuel blends on flame stability, laminar flame speed, and Markstein length," Proceedings of the Combustion Institute, vol. 33, no. 1, pp. 929-937, 2011/01/07/
[18] C. M. Vagelopoulos and F. N. Egolfopoulos, "Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air," Symposium (International) on Combustion, vol. 25, no. 1, pp. 1317-1323, 1994/01/20/
[19] L. Xiang, H. Chu, F. Ren, and M. Gu, "Numerical analysis of the effect of CO2 on combustion characteristics of laminar premixed methane/air flames," Journal of the Energy Institute, vol. 92, no. 5, pp. 1487-1501, 2019/10/26/
[20] P. Dirrenberger et al., "Measurements of Laminar Flame Velocity for Components of Natural Gas," Energy & Fuels, vol. 25, no. 9, pp. 3875-3884, 2011/09/14
[21] Y. He et al., "Investigation of laminar flame speeds of typical syngas using laser based Bunsen method and kinetic simulation," Fuel, vol. 95, pp. 206-213, 2012/05/08/
[22] A. Hayakawa, T. Goto, R. Mimoto, Y. Arakawa, T. Kudo, and H. Kobayashi, "Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures," Fuel, vol. 159, pp. 98-106, 2015/11/16/
[23] J. H. Lee, S. I. Lee, and O. C. Kwon, "Effects of ammonia substitution on hydrogen/air flame propagation and emissions," International Journal of Hydrogen Energy, vol. 35, no. 20, pp. 11332-11341, 2010/10/09