| 研究生: |
林敬銘 Lin, Ching-Ming |
|---|---|
| 論文名稱: |
架空移動式起重機結構強度分析及桁架最佳化設計 Structure Analysis and Box-Girder Design Optimization of Overhead Travelling Cranes |
| 指導教授: |
黃聖杰
Hwang, Sheng-Jye |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系碩士在職專班 Department of Mechanical Engineering (on the job class) |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 有限元素分析 、田口方法 、最佳化設計 、起重機 |
| 外文關鍵詞: | FEM analysis, Taguchi methods, optimum design, crane |
| 相關次數: | 點閱:123 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在工廠中,對於搬運廠房內之物料,起重機可說是不可或缺之機械,由於起重機具有能量大、高危險性的特性,如設計不當時,往往很容易造成機械的嚴重損壞及勞工生命威脅等問題,因此,起重機為政府目前主要列管的危險性機械之一。
而起重機在傳統的計算方法,由於結構的簡化分析,使得計算準確度降低,因而存在與實際受力狀況不同之情況。而在桁架設計上,製造商一般皆以經驗來決定起重機相關尺寸,對於各尺寸對結構強度之影響關係並未納入設計時評估,因而設計出之起重機未能有效達到最佳化設計,存在設計不良、浪費材料及製造成本過高等問題,將降低製造商之競爭力。
本研究共分為三部份進行,第一部份為取得市場上已生產之起重機資料,再輔以3-D繪圖軟體SolidWorks建立起重機模型的樣本,並利用有限元素軟體ANSYS Workbench 12進行結構應力及撓度分析,且針對起重機有無補強板之影響做一比對分析,以了解簡化公式與實際受力狀況之差異。第二部份為利用田口方法對起重機桁架進行最佳化設計,以求得桁架最佳設計尺寸,使得設計出之起重機能以最經濟的用料成本來符合法規強度要求。第三部份為對起重機之局部挫屈、應力集中及疲勞問題進行研究探討,使設計之起重機能確保其安全性並符合市場需求。
Cranes is one of the essential and necessary machines to move the materials within the plant. With the features of great energy and high-risk characteristics, any inadequate design of the cranes will be likely to cause the big problems such as serious mechanical damages and threatening lives to labors. For this reason, cranes are one of the major dangerous machines restricted by the government.
Traditionally, crane-makers simplified the model to calculate the structure of cranes, it will lead to the accuracy diminishes and causes the different stress on situations. In general, the makers determine the relevant size of cranes in box-girders designing by virtue of experience, they did not assess the influences of the structural strength respectively, so they could not achieve the optimum designs effectively, for poor design、materials- waste、high manufacturing costs and so on, the competitiveness of manufactures might be reduced.
This paper was divided into three parts. The first part obtained information of produced cranes on market, supplemented by 3-D graphics software-SolidWorks to establish a sample of crane models, analyzed structural stress and deflection by finite element software ANSYS Workbench 12 and comparatively analyzed the stiffeners how to influence the cranes, so we could understand the differences between the simplified formulas and the actual stress conditions.
The second part optimized to get optimum designs for box-girders of cranes by using Taguchi methods and got dimensions which fit in with codes and regulations and at the minimum of material cost.
The last part studied the local buckling, stress concentration and fatigue problems of the cranes, so the designed cranes could be ensured safety and met the demands of market.
1、C. Alkin, C. E. Imrak, and H. Kocabas, Solid Modeling and Finite Element Analysis of an Overhead Crane Bridge, Acta Polytechnica, Vol.45, pp. 61-67, 2005.03
2、D. C. D. Oguamanam, J. S. Hansen, and G. R. Heppler, Dynamic Response of an Overhead Crane System, Journal of Sound and Vibration, Vol.213(5), pp. 889-906, 1998
3、D. C. D. Oguamanam, J. S. Hansen and G. R. Heppler, Dynamic of a Three-Dimensional Overhead Crane System, Journal of Sound and Vibration, Vol.242(3), pp. 411-426, 2001
4、Muhammad Abid, Muhammad Hammad Akmal, and Shahid Parvez, Optimization of Box Type Girder of Overhead Crane, Global Design to Gain a Competitive Edge, pp.609-618, 2008.07
5、M. Amagai, Chip Scale Package (CSP) Solder Joint Reliability and Modeling, Microelectronics Reliability, Vol.39, pp. 463-477, 1999.
6、Rehan H Zuberi, Dr. Long Kai, and Prof. Zuo Zhengxing, Design Optimization of EOF Crane Bridge, International Conference on Engineering Optimization, 2008.06.05
7、Tadeusz Niezgodzin´ski, and Tomasz Kubiak, The Problem of Stability of Web Sheets Inbox-Girders of Overhead Cranes, Thin-Walled Structures, Vol.43, pp. 1913-1925, 2005.
8、Vandana KL, and Kartik M, Finite Element Method-Perio-Endo concept, Endodontology, Vol.16, pp. 38-41, 2004.
9、Yoshiyuki Sakawa, and Hideki Sano, Nonlinear Model and Linear Robust Control of Overhead Traveling Cranes, Nonlinear Analysis Theory Methods & Applications, Vol.30, pp. 2197-2207, 1997.
10、Huei-Huang Lee, Finite Element Simulations with ANSYS Workbench 12 Theory-Applications-Case Studies, Schroff Development Corporation, 2010.
11、James M. Gere, and Stephen P. Timoshenko, Mechanics of materials-3nd ed, PWS-KENT Publishing Company, 1990.
12、R. C. Hibbeler, Mechanics of materials-2nd ed, Macmillan College Publishing Company, 1994.
13、史進、鄭建榮及俞中建, 利用APDL的門式起重機主樑參數化建模與仿真, 現代制造工程, 2009年第9期, pp. 127-129, 2009
14、歐家豪, 起重機的運動分析及在虛擬實境的應用, 國立成功大學機械工程學系論文, 1998.06
15、蘇志彥, 造型椅有限元素分析與設計, 國立成功大學工程科學研究所論文, 2007.06
16、穆立祥, 起機結構之探討, 私立中原大學機械工程學系論文,1998.06
17、高崇洋、王書龍及康淵, 有限元素法在塔式起重機結構強度之分析,行政院勞工委員會勞工安全衛生研究所季刊, 第6 卷第4 期, 1998.12
18、毛昭陽, 以反應曲面結合基因演算法進行橋型起重機結構強度之最佳設計(I) -最佳化方法之建立, 中華環安衛科技協會會刊, 第29 期,2009.07
19、毛昭陽, 以反應曲面結合基因演算法進行橋型起重機結構強度之最佳設計(II) -有限元素分析的處理技術, 中華環安衛科技協會會刊,第30 期, 2010.01
20、李輝煌, ANSYS 工程分析基礎與觀念, 2005.05
21、李輝煌, 田口方法-品質設計的原理與實務, 高立圖書有限公司, 2008
22、歐陽及陳炘, 材料力學論衡, 文笙書局, 2006
23、龔皇光、黃柏文及陳鴻雄, ANSYS 與電腦輔助工程分析, 全華科技圖書股份有限公司, 2002
24、陳浩, 機械設計(上), 高立圖書有限公司, 1998.8
25、行政院勞工委員會, 固定式起重機安全檢查構造標準, 2005.08
26、行政院勞工委員會, 固定式起重機安全檢查指引, 2006.03
27、中華民國國家標準, CNS6426 起重機鋼結構部分之計算標準, 2006.02