簡易檢索 / 詳目顯示

研究生: 胡家勝
Hu, Jia-Sheng
論文名稱: 兩輪自平衡車之操縱控制與故障診斷
Pilot Control and Fault Diagnosis of an Auto-balancing Two-wheeled Cart
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 132
中文關鍵詞: 系統建模操縱控制兩輪自平衡車故障診斷強健控制PI估測器設計
外文關鍵詞: Auto-balancing two-wheeled cart, pilot control, fault diagnosis, robust control, PI observer, dynamics modeling
相關次數: 點閱:108下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於兩輪自平衡車的靈活移動性與無污染,使得兩輪自平衡車漸受市場注目,成為短距離代步車之新選擇。同軸兩輪車為一天生不穩定之非極小相位系統,透過迴授控制使其具有自平衡能力,因此新的兩輪自平衡車控制技術不斷的被研究;此外,由於使用者騎乘其中,若控制過程出現故障無法即時檢測,使用者將會有摔下兩輪自平衡車的危險,因此平衡控制與故障診斷為兩輪自平衡車之重要議題,基於此理由,本論文致力於研究兩輪自平衡車之操縱控制與故障診斷技術。
    在兩輪自平衡車之控制技術上,本論文詳細分析同軸兩輪車之系統建模,並提出一種簡易且有效的兩輪自平衡車操縱控制,此技術包含平衡控制器與電子差速器演算法則,允許使用者遠端遙控兩輪自平衡車之運行。在感測器故障檢測方面,本論文使用 迴路整型技術,建構強健平衡控制器,並採用正規化互質分解法則,設計故障偵測濾波器,偵測兩輪自平衡車之迴授感測器可能發生的故障。在致動器故障檢測方面,本論文利用PI估測器架構提出故障診斷策略,此方法可偵測致動器上可能發生的故障與不正常操控。獲得系統之故障資訊後,本論文利用統計理論提出具可靠度之閾值選定法則,提出對應之故障評估策略,此故障評估設定法則即時的警示騎乘者避免可能之危險,進一步增進騎乘兩輪自平衡車之安全性。實驗結果顯示,本論文所提出之操縱控制與故障診斷策略,對於提升兩輪自平衡車之操縱與安全,具可行性與實用性。

    Since the beginning of the new millennium, the auto-balancing two-wheeled cart (ABTWC) has become more and more popular due to its responsive yet precise movement and pollution-free. This dissertation is devoted to investigating both the pilot control and fault diagnosis technologies for an ABTWC which is inherently unstable and has a non-minimum phase.
    In this dissertation, we present a pilot control algorithm, which converts two joysticks’ commands into two torque directives for movement. This technique allows the user to operate the ABTWC linearly for both motion and orientation control via a joystick. Also, the dynamics modeling and corresponding system phenomena of the ABTWC are discussed. Since a human being is involved in the operation of an ABTWC, the rider faces the danger of being injured in a fall if any system failure occurs. Therefore, the rider should be warned immediately when any system failure develops, ensuring that proper action can be taken to avoid a dangerous accident. The sensor fault-detection technology for the ABTWC is proposed in this dissertation. A model-based fault-detection filter is designed to detect sensor faults. The observer gain obtained by solving an algebraic Riccati equation in the normalized coprime factorization approach offers some design convenience associated with the fault diagnosis filter. The actuator fault-detection is also investigated. This dissertation employs a PI observer to detect abnormal information in an ABTWC caused by actuator faults and steering load-torques. In order to promptly alert the rider for safety purposes in the event of a malfunction, the decision-making process to identify a critical failure is investigated. A statistical threshold that has the benefits of improving decision-making reliability is investigated for diagnosing a possible abnormal operation and/or a serious system malfunction. The experimental results substantiate that the proposed pilot control and fault diagnosis strategies have the ability, in practice, to improve the ABTWC’s mobility and safety.

    1. Introduction .…………………………………………………………………... 1 1.1 Motivation ……………………………………………………………….. 1 1.2 Background Review ……………………………………………………... 5 1.3 Fault Diagnosis for ABTWC …………………………………………….. 12 1.4 Contribution and Scope of the Dissertation ……………………………... 13 2. Fundamentals of Control and Model-based Fault Diagnosis ………16 2.1 Preliminaries ……………………………………………………………... 17 2.1.1 State space forms …………………………………………………. 17 2.1.2 Inner and co-inner systems ……………………………………….. 17 2.1.3 Coprime factorization …………………………………………….. 18 2.1.4 Normalized coprime factorization ………………………………... 19 2.1.5 Algebraic Riccatic equation and Hamiltonian matrix ……………. 21 2.1.6 Linear fractional transformations and chain scattering-matrix description ………………………………………………………... 21 2.1.7 J-lossless systems ………………………………………………… 23 2.2 Fundamentals of Model-based Fault Diagnosis …………………………. 24 2.2.1 Robust fault-detection design via factorization approach ……....... 27 2.2.2 Perfect fault detection and isolation and perfect disturbance decoupling ………………………………………………………... 28 2.2.3 Robust residual generation through standard filtering formulation …………………………… 30 2.3 Filtering ……………………………31 3. Dynamics Modeling …………………………………………………………… 39 3.1 The ABTWC Modeling ………………………………………………….. 39 3.2 ABSWC Modeling ………………………………………………………. 45 3.3 Summary ………………………………………………………………… 49 4. ABTWC Motion Pilot ………………………………………………………… 50 4.1 ABTWC Pilot Control …………………………………………………… 50 4.2 Electronic Differential Steering Algorithm ……………………………… 52 4.3 Examples for the ABTWC Motion Pilot ………………………………… 53 4.4 Cost-effective ABTWC ………………………………………………….. 57 4.5 Rest Posture and Auto-standup of ABTWC ……………………………. 60 4.6 Examples for the Cost-effective and Auto-standup ABTWC ……………. 61 4.7 Summary ………………………………………………………………… 65 5. Design of Robust Stabilization and Sensor Fault Diagnosis for an ABTWC ………………………………………………………………….……. 67 5.1 Motivation and Problem Statement ……………………………………… 67 5.2 ABTWC Control ………………………………………………………… 70 5.2.1 Control scheme …………………………………………………… 70 5.2.2 Sensor fault detection …………………………………………….. 73 5.3 Examples and Discussion ………………………………………………… 79 5.4 Summary ………………………………………………………………… 83 6. Diagnosis of Actuator Fault and Abnormal Load Torque for Control of an ABTWC ……………………………………………………………………….. 85 6.1 Motivation and Problem Statement ……………………………………… 85 6.2 PI Observer and Its Application to Fault Diagnosis ……………………… 87 6.3 Proposed ABTWC Actuator Fault Diagnosis Strategy …………………... 93 6.4 Threshold Determination for Decision-Making ………………………….. 97 6.5 Examples and Discussion ………………………………………………… 100 6.6 Summary …………………………………………………………………. 104 7. Conclusions …………………………………………………………………….. 106 7.1 Summary …………………………………………………………………. 106 7.2 Recommendations for Further Research …………………………………. 107 References ………………………………………… 109 Appendix A …………………………………….. 118 Appendix B …………………………………….. 120 Appendix C …………………………………….. 121 Appendix D ……………………………………….. 123 Appendix E ……………………………………….. 125 Appendix F ……………………………………….. 126 Appendix G ……………..………….…………….. 131

    [1] Kyoto Protocol, http://unfccc.int/kyoto_protocol/items/2830.php.
    [2] 山藤和男,“同軸二輪車姿勢制御方法,”日本專利:特許第2530652,六月十四日,1996。
    [3] Human Transporter, http://www.segway.com/.
    [4] iBOT Mobility System, http://www.independencenow.com/ibot/.
    [5] K. Kawabata, S. Okina, and T. Fujii, “A system for self-diagnosis of an autonomous mobile robot using an internal state sensory system: fault detection and cope with the internal condition,” Advanced Robotics, vol. 17, pp. 925-950, 2003.
    [6] T. Yan, J. Ota, A. Nakamura, T. Arai, and N. Kuwahara, “Development of a remote fault diagnosis system applicable to autonomous mobile robots,” Advanced Robotics, vol. 16, pp. 573-594, 2002.
    [7] The Japan Times, http://www.japantimes.co.jp/cgi-bin/getarticle.pl5?nn20011231a9 z.htm.
    [8] Q. Feng and K. Yamafuji, “Design and simulation of control systems of an inverted pendulum,” Robotica, vol. 6, pp. 235-241, 1988.
    [9] Y.-S. Ha and S. Yuta, “Trajectory tracking control for navigation of the inverse pendulum type self-contained mobile robot,” Robotics and Autonomous Systems, vol. 17, pp. 65-80, 1996.
    [10] F. Grasser, A. D’Arrigo, S. Colombi, and A. C. Ruffer, “JOE: a mobile, inverted pendulum,” IEEE Trans. on Industrial Electronics, vol. 49, pp. 107-114, 2002.
    [11] nBot Balancing Robot, http://www.geology.smu.edu/~dpa-www/robo/nbot/.
    [12] M. A. Karkoub and M. Parent, “Modeling and non-linear feedback stabilization of a two-wheel vehicle,” IMechE, Part I: Systems and Control Engineering, vol. 218, pp. 675-686, 2004.
    [13] The Japanese Segway PMP-2, http://www.akihabaranews.com/en/en/news-10767 -The+Japanese+Segway+PMP-2.html.
    [14] T.-J. Ren, T.-C. Chen, M.-C. Tsai, and W.-S. Yao, “Modeling and motion control of the mobile vehicle with an inverted pendulum,” in Proceedings of International Conference on Intelligent Manipulation and Grasping, Genoa, Italy, 2004, pp. 455-460.
    [15] K. Pathak, J. Franch, and S. K. Agrawal, “Velocity and position control of a wheeled inverted pendulum by partial feedback linearization,” IEEE Trans. on Robotics, vol. 21, pp. 505-513, 2005.
    [16] T. Urakubo, K. Tsuchiya, and K. Tsujita, “Motion control of a two-wheeled mobile robot,” Advanced Robotics, vol. 15, pp. 711-728, 2001.
    [17] A. Ko, H. Y. K. Lau, and T. L. Lau, “SOHO security with mini self-balancing robots,” Industrial Robot, vol. 32, pp. 492-498, 2005.
    [18] Y. Kim, S.-H. Kim, and Y.-K. Kwak, “Dynamic analysis of a nonholonomic two-wheeled inverted pendulum robot,” Journal of Intelligent and Robotic Systems, vol. 44, pp. 25-46, 2005.
    [19] N. Shiroma, O. Matsumoto, and K. Tani, “Cooperative behavior of a mechanically unstable mobile robot for object transportation,” JSME International Journal, Series C, vol. 42, pp. 965-973, 1999.
    [20] Building a Balancing Scooter, http://tlb.org/scooter.html.

    [21] Control of an Auto-balancing Two-wheeled Cart, http://www.me.ncku.edu.tw/ ~abtwc/.
    [22] D. L. Kamen, R. R. Ambrogi, R. J. Duggan, J. D. Field, R. K. Heinzmann, B. Amsbury, and C. C. Langenfeld, “Personal Mobility Vehicles and Methods,” U. S. Patent 6,367,817, April 9, 2002.
    [23] H. Ozaki, T. Ohgushi, T. Shimogawa, and C.-J. Lin, “Position and orientation of a wheeled inverted pendulum,” JSME International Journal, Series C, vol. 44, pp. 188-195, 2001.
    [24] Segway Exposed Accident Injuries, http://www.segwayexposed.com/.
    [25] D. W. Vos and A. H. V. Flotow, “Dynamics and nonlinear adaptive control of an autonomous unicycle: theory and experiment,” in Proceedings of the 29th IEEE Conference on Decision and Control, Honolulu, Hawaii, 1990, pp. 182-187.
    [26] Z. Sheng and K. Yamafuji, “Postural stability of a human riding a unicycle and its emulation by a robot,” IEEE Trans. on Robotics and Automation, vol. 13, pp. 709-720, 1997.
    [27] R. Nakajima, T. Tsubouchi, S. Yuta, and E. Koyanagi, “A development of a new mechanism of an autonomous unicycle,” in Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems, Grenoble, France, 1997, pp. 906-912.
    [28] Y. Ou and Y. Xu, “Balance control of a single wheel robot,” in Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and System, Lausanne, Switzerland, 2002, pp. 2043-2048.
    [29] The Wheel Surf, http://www.wheelsurf.nl/.

    [30] K. Hofer, “Electric vehicle on one wheel,” in Proceedings of IEEE Conference on Vehicle Power and Propulsion, Chicago, USA , 2005, pp. 517-521.
    [31] The Electric Unicycle, http://tlb.org/eunicycle.html.
    [32] i-swing, http://www.toyota.co.jp/en/news/05/1011_1.html.
    [33] T. B. Lauwers, G. A. Kantor, R. L. Hollis, “A dynamically stable single-wheeled mobile robot with inverse mouse-ball drive,” in Proceedings of IEEE International Conference on Robotics and Automation, Orlando, USA , 2006, pp. 2884 - 2889.
    [34] The Honda Humanoid Robot ASIMO, http://world.honda.com/ASIMO/.
    [35] QRIO, http://www.sony.net/SonyInfo/QRIO/.
    [36] 世界初!2足型車輪移動開,http://www.mel.go.jp/ soshiki/tokatsu/press/h10-9-25/H10-9-25.html.
    [37] O. Matsumoto, S. Kajita, M. Saigo, and K. Tani, “Dynamic trajectory control of passing over stairs by a biped type leg-wheeled robot with nominal reference of static gait,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, Canada, 1998, pp. 406-412.
    [38] Murata Boy, http://www.murataboy.com/en/.
    [39] C. M. Close and D. K. Frederick, Modeling and Analysis of Dynamic Systems. New York: John Wiley & Sons, 1995.
    [40] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems. New York: Addison Wesley, 1995.
    [41] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control. New York: John Wiley & Sons, 1996.
    [42] J. M. Maciejowski, Multivariable Feedback Design. New York: Addison-Wesley, 1989.
    [43] P. Carman and P. Tigwell, CATIA Reference Guide. Camino Entrada: On Word Press, 1998.
    [44] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State-space solutions to standard and control problems,” IEEE Trans. on Automatic Control, vol. 34, pp. 831-847, 1989.
    [45] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. New Jersey: Prentice Hall, 1996.
    [46] M.-C. Tsai and C.-S. Tsai, “A chain scattering matrix description approach to control,” IEEE Trans. on Automatic Control, vol. 38, pp. 1416-1421, 1993.
    [47] M.-C. Tsai, E. J. M. Geddes, and I. Postlethwaite, “Pole-zero cancellations and closed-loop properties of an mixed sensitivity design problem,” Automatica, vol. 28, pp. 519-530, 1992.
    [48] J. Morimoto and K. Doya, “Reinforcement learning of dynamic motor sequence: learning to standup,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, Canada, 1998, pp. 1721-1726.
    [49] S. K. W. Au, Y. Xu, and W. W. K. Yu, “Control of tilt-up motion of a single wheel robot via model-based and human-based controllers,” Mechatronics, vol. 11, pp. 451-473, 2001.
    [50] H. Kimura, Chain-Scattering Approach to Control. Boston: Birkhuser, 1996.

    [51] K. M. Nagpal and P. P. Khargonekar, “Filtering and smoothing in an setting,” IEEE Trans. on Automatic Control, vol. 36, pp. 152-166, 1991.
    [52] J. Chen and R. J. Patton, Robust Model-based Fault Diagnosis for Dynamic Systems. Massachusetts: Kluwer Academic Publishers, 1999.
    [53] E. Y. Chow and A. S. Willsky, “Analytical redundancy and the design of robust failure detection systems,” IEEE Trans. on Automatic Control, vol. AC-29, pp. 603-614, 1984.
    [54] M. Vidyasagar, Control Systems Synthesis: a Factorization Approach. Massachusetts: MIT Press, 1985.
    [55] R. Mangoubi, B. D. Appleby, and J. R. Farrell, “Robust estimation in fault detection,” in Proceedings of the 31st IEEE Conference on Decision and Control, Arizona, USA, 1992, pp. 2317-2322.
    [56] R. Mangoubi, B. D. Appleby, G. C. Verghese, and W. E. Vander-Velde, “A robust failure detection and isolation algorithm,” in Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, USA, 1995, pp. 2377-2382.
    [57] C. N. Nett, C. A. Jacobson, and M. J. Balas, “A connection between state space and doubly coprime fractional representations,” IEEE Trans. on Automatic Control, vol. AC-29, pp. 831-832, 1984.
    [58] P. M. Frank and X. Ding, “Frequency domain approach to optimally robust residual generation and evaluation for model-based fault diagnosis,” Automatica, vol. 30, pp. 789-804, 1994.
    [59] P. Barak, “Vehicle system Dynamics – Part II,” General Motors Institute.
    [60] K. Zhou and Z. Ren, “A new controller architecture for high performance, robust, and fault-tolerant control,” IEEE Trans. on Automatic Control, vol. 46, pp.1613-1618, 2001.
    [61] D. U. Campos-Delgado, S. Martinez-Martinez, and K. Zhou, “Integrated fault-tolerant scheme for a dc speed drive,” IEEE Trans. on Mechatronics, vol. 10, pp. 419-427, 2005.
    [62] D. McFarlane and K. Glover, “A loop shaping design procedure using synthesis,” IEEE Trans. on Automatic Control, vol. 37, pp. 759-769, 1992.
    [63] M.-C. Tsai, E.-C. Tseng, and M.-Y. Cheng, “Design of a torque observer for detecting abnormal load,” Control Engineering Practice, vol. 8, pp. 259-269, 2000.
    [64] R. J. Patton, P. M. Frank, and R. N. Clark, Issues of Fault Diagnosis for Dynamic Systems. London: Springer, 2000.
    [65] Y. Aoki and A. Kojima, “Experimental evaluation of preview control: application to inverted pendulum system,” in Proceedings of 2005 SICE annual conference, Okayama, Japan, 2005, pp. 710-713.
    [66] A. Kojima and S. Ishijima, “ performance of preview control systems,” Automatica, vol. 39, pp. 693-701, 2003.
    [67] C. Choi and T.-C. Tsao, “ preview control for discrete-time systems,” Trans. of ASME, Journal of Dynamic Systems, Measurement, and Control, vol. 123, pp. 117-124, 2001.
    [68] J. M. Maciejowski, Predictive Control with Constraints. Harlow: Prentice Hall, 2002.
    [69] MATLAB 7.1, http://www.mathworks.com/.
    [70] Maple 9.5, http://www.maplesoft.com/.
    [71] G. Zames, “Feedback and optimal sensitivity: model reference transformation, multiplicative seminorms, and approximated inverse,” IEEE Trans. on Automatic Control, vol. 26, pp. 301-320, 1981.
    [72] D. McFarlane and K. Glover, Robust Controller Design Using Normalized Coprime Factor Plant Descriptions. London: Springer Verlag, 1990.
    [73] K. Glover and D. Macfarlane, “Robust stabilization of normalized coprime factor plant descriptions with -bounded uncertainty,” IEEE Trans. on Automatic Control, vol. 34, pp. 821-830, 1989.
    [74] D.-S. Hwang, S.-C. Peng, and P.-L. Hsu, “An integrated control diagnostic system for a hard disk drive,” IEEE Trans. on Control Systems Technology, vol. 2, pp. 318-326, 1994.
    [75] W. Chen and J. Jiang, “Fault-tolerant control against stuck actuator faults,” IEE Proc.-Control Theory Appl., vol. 152, pp. 138-146, 2005.
    [76] J. Lunze and T. Steffen, “Control reconfiguration after actuator failures using disturbance decoupling methods,” IEEE Trans. on Automatic Control, vol. 51, pp. 1590-1601, 2006.
    [77] H. Wang and S. Daley, “Actuator fault diagnosis: an adaptive observer-based technique,” IEEE Trans. on Automatic Control, vol. 41, pp. 1073-1078, 1996.
    [78] M. L. McIntyre, W. E. Dixon, D. M. Dawson, and I. D. Walker, “Fault identification for robot manipulators,” IEEE Trans. on Robotics, vol. 21, pp. 1028-1034, 2005.
    [79] G. Ellis, Control System Design Guide. New York: Elsevier Academic Press, 2004.
    [80] H. H. Niemann, J. Stoustrup, B. Shafai, and S. Beale, “LTR design of proportional-integral observers,” International Journal of Robust Nonlinear Control, vol. 5, pp. 671-693, 1995.
    [81] G.-R. Duan, G.-P. Liu, and S. Thompson, “Eigenstructure assignment design for proportional-integral observers: continuous-time case,” IEE Proc.-Control Theory Appl., vol. 148, pp. 263-267, 2001.
    [82] J.-S. Hu and M.-C. Tsai, “Model reference approach to a force feedback joystick in PC video games,” International Journal of Computer Applications in Technology, vol. 28, pp. 304-309, 2007.
    [83] S., Beale and B. Shafai, “Robust control system design with a proportional integral observer,” International Journal of Control, vol. 50, pp. 97-111, 1989.
    [84] D. Soffker, T.-J. Yu, and P. C. Muller, “State estimation of dynamical systems with nonlinearities by using proportional-integral observer,” International Journal of Systems Science, vol. 26, pp. 1571-1582, 1995.
    [85] G.-R. Duan and A.-G. Wu, “Robust fault detection in linear systems based on PI observers,” International Journal of Systems Science, vol. 37, pp. 809-816, 2006.
    [86] K. Fukunaga, Introduction to Statistical Pattern Recognition. New York: Academic Press, 1979.
    [87] B. Walker, “Fault detection threshold detection using markov theory,” in Chapter 14, Fault Diagnosis in Dynamic Systems, Theory and Application, R. J. Patton, P. M. Frank, and R. N. Clark, Ed. New York: Prentice Hall, 1989, pp. 477-508.
    [88] X. Ding and P. M. Frank, “Fault detection via factorization approach,” Systems and Control Letters, vol. 14, pp. 431-436, 1990.
    [89] J. Kautsky, N. K. Nichols, and P. V. Dooren, “Robust pole assignment in linear state feedback,” International Journal of Control, vol. 41, pp. 1129-1155, 1985.
    [90] The Official MotoGP Website, http://www.motogp.com/en/motogp/.
    [91] PMC32-6000, http://www.mirl.itri.org.tw/rd/automation/integration/industrial/.

    下載圖示 校內:立即公開
    校外:2007-10-31公開
    QR CODE