| 研究生: |
陳瑞鴻 Augusto, James |
|---|---|
| 論文名稱: |
鋁鈦鎂複合脫氧熱力學計算及生成介在物研究 Thermodynamic Calculations and Characteristics Analysis of Inclusions in Al-Ti-Mg Complex Deoxidized Steel |
| 指導教授: |
林光隆
Lin, Kwang-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 196 |
| 中文關鍵詞: | 氧化物冶金 、熱力學研究 、介在物 、Al-Ti-Mg 複合脫氧 |
| 外文關鍵詞: | Oxide Metallurgy, Thermodynamic Calculations, Inclusions, Al-Ti-Mg Complex Deoxidization |
| 相關次數: | 點閱:61 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究對Al-Ti-Mg複合脫氧鋼之介在物特徵進行研究,結合熱力學計算, 建立Al-Ti-Mg複合脫氧鋼介在物預測模型,獲得 1873 K 條件下該鋼種的Mg、Al、Ti、O之間的熱力學平衡關係圖;計算結果顯示,Mg、Al、Ti之脫氧能力依次減弱 ;獲得MgO、MgAl2O4、Al2O3之穩定區域相圖(Phase Stability Diagram);透過軟體 FactSage 7.1了解降溫過程鋼中介在物演變情形及生成順序,分析不同鎂含量對介在物演變行為之影響, 獲得各相生成比例分析圖(Phase Analysis Diagram)。同時對SS400鋁脫氧鋼添加鈦鎂處理後,經場發射電子顯微鏡觀察介在物特徵,並利用 ASPEX Explorer 分析介在物種類、尺寸及分布密度。
實驗結果顯示在當前鋼液成分下向鋼液中添加微量 Mg 就可以使介在物實現改質,且對於介在物平均粒徑的減小有良好的效果,並得知隨著鎂添加量增加的介在物變性路徑為 Al2O3→ MgAl2O4→ MgO。本研究所得到之結果為:在鋼液成分下添加 5 ppm Mg 時可以達到介在物改質的最佳效果,其介在物之平均粒徑最小、單位面積所含之介在物數量最多且可生成尺寸較小之MgAl2O4。鋼中形成之介在物分別為 TiN, TiC, MnS, MgS, MgO, MgAl2O4, Al2O3。由上述實驗分析結果所示,與熱力學計算後之結果一致。
Due to the increasing demand for high-quality steel, improvements of physical and chemical properties of steels are needed in order to meet the ever-increasing demands on optimized steel properties, particularly in strength, toughness, and weld ability. In order to understand the correlation between amount of additives and inclusions formation, Al-Ti-Mg complex deoxidization thermodynamic calculations and experiment were carried out. The deoxidization equilibria of Al, Ti and Mg are calculated with Mg > Al > Ti. The formation of oxides, such as MgO, MgAl2O4, and Al2O3 are estimated by plotting the phase stability diagram at 1873K steelmaking temperature. Inclusions formation during solidification process have also been identified through FactSage 7.1. Furthermore, the morphological and compositional change of inclusions were also studied.
The experimental results showed that the inclusions modification effect of Mg could be achieved just by the trace addition of Mg (5 ppm of Mg addition has the best modification effect in the present work). Furthermore, the average particle size of the inclusions is also decreased significantly, with average particle size of 1.98 μm. The formation of TiN, TiC, MnS, MgS, MgO, MgAl2O4, Al2O3 are consistent with the calculated results.
[1] 曾馨瑩, “Ti-Mg複合脫氧鋼熱力學計算及生成介在物研究,” 國立成功大學材料科學及工程學系, 碩士論文, 2015.
[2] 潘飛, “稀土鈰對SS400鋼中介在物形成的影響研究,” 國立成功大學材料科學及工程學系, 碩士論文, 2016.
[3] 簡秀珊, “添加鎂對SM570鋼中介在物改質的研究,” 國立成功大學材料科學及工程學系, 碩士論文, 2013.
[4] 王國棟, 劉相華, 李维娟, 杜林秀, 張红梅, 袁建光, 張丕軍, “超級Super-SS400鋼的工業軋製實驗,” 鋼鐵, vol. 36, no. 5, pp. 39-43, 2001.
[5] D. Fairchild, D. Howden, and W. Clark, “The Mechanism of Brittle Fracture in A Microalloyed Steel: Part I. Inclusion-Induced Cleavage,” Metallurgical and Materials Transactions A, vol. 31, no. 3, pp. 641-652, 2000.
[6] Y. Smith, A. Coldren, and R. Cryderman, “Mn-Mo-Nb Acicular Ferrite Steels with High Strength and Toughness,” Toward Improved Ductility Toughness, Climax Molybdenum Development Co.(Japan) Ltd. 1972, 119-142, 348-352, 1972.
[7] S. Ogibayashi, “Advances in Technology of Oxide Metallurgy,” Nippon Steel Tech. Rep.(Japan), pp. 70-76, 1994.
[8] A. Kojima, A. Kiyose, R. Uemori, M. Minagawa, M. Hoshino, T. Nakashima, K. Ishida, and H. Yasui, “Super High HAZ Toughness Technology with Fine Microstructure Imparted by Fine Particles,” Shinnittetsu Giho, pp. 2-5, 2004.
[9] K. Zhu and Z. Yang, “Effect of Magnesium on The Austenite Grain Growth of The Heat-Affected Zone in Low-Carbon High-Strength Steels,” Metallurgical and Materials Transactions A, vol. 42, no. 8, pp. 2207-2213, 2011.
[10] J.-L. Lee and Y.-T. Pan, “Effect of Sulfur-content on the Microstructure and Toughness of Simulated Heat-affected Zone in Ti-killed Steels,” Metallurgical Transactions A, vol. 24, no. 6, pp. 1399-1408, 1993.
[11] D. Abson and R. Pargeter, “Factors Influencing As-deposited Strength, Microstructure, and Toughness of Manual Metal Arc Welds Suitable for C–Mn Steel Fabrications,” International Metals Reviews, vol. 31, no. 1, pp. 141-196, 1986.
[12] O. Grong and D. K. Matlock, “Microstructural Development in Mild and Low-alloy Steel Weld Metals,” International Metals Reviews, vol. 31, no. 1, pp. 27-48, 1986.
[13] Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, and K. Okamoto, “Improvement in HAZ Toughness of Steel by Tin-Mns Addition,” ISIJ International, vol. 34, no. 10, pp. 829-835, 1994.
[14] Z. Zhang and R. Farrar, “Role of Non-metallic Inclusions Information of Acicular Ferrite in Low Alloy Weld Metals,” Materials Science and Technology, vol. 12, no. 3, pp. 237-260, 1996.
[15] H. Mabuchi, R. Uemori, and M. Fujioka, “The Role of Mn Depletion in Intra-granular Ferrite Transformation in the Heat Affected Zone of Welded Joints with Large Heat Input in Structural Steels,” ISIJ International, vol. 36, no. 11, pp. 1406-1412, 1996.
[16] Y. Kang, S. Jeong, J.-H. Kang, and C. Lee, “Factors Affecting the Inclusion Potency for Acicular Ferrite Nucleation in High-Strength Steel Welds,” Metallurgical and Materials Transactions A, vol. 47, no. 6, pp. 2842-2854, 2016.
[17] R. Ricks, P. Howell, and G. Barritte, “The Nature of Acicular Ferrite in HSLA Steel Weld Metals,” Journal of Materials Science, vol. 17, no. 3, pp. 732-740, 1982.
[18] G. A. Chadwick, “Metallography of Phase Transformations,” 1972.
[19] I. Madariaga and I. Gutierrez, “Role of the Particle-Matrix Interface on the Nucleation of Acicular Ferrite in a Medium Carbon Microalloyed Steel,” Acta Materialia, vol. 47, no. 3, pp. 951-960, 1999.
[20] D. S. Sarma, A. Karasev, and P. Jönsson, “On the Role of Non-Metallic Inclusions in the Nucleation of Acicular Ferrite in Steels,” ISIJ International, vol. 49, no. 7, pp. 1063-1074, 2009.
[21] C. Feng, C.-F. Yang, S. Hang, Y.-Q. Zhang, and X. Zhou, “Effect of Magnesium on Inclusion Formation in Ti-Killed Steels and Microstructural Evolution in Welding Induced Coarse-Grained Heat Affected Zone,” Journal of Iron and Steel Research, International, vol. 16, no. 1, pp. 69-74, 2009.
[22] J. H. Ma, D. P. Zhan, Z. H. Jiang, and J. C. He, "Effect of Ti, Al and Mg Addition on the Impact Toughness of Heat Affected Zone in Low Carbon Steel." Advanced Materials Research, vol. 79, pp. 143-146. Trans Tech Publications, 2009.
[23] Y. Liu, G. Li, X. Wan, X. Zhang, Y. Shen, and K. Wu, “Toughness Improvement by Zr Addition in The Simulated Coarse-Grained Heat-Affected Zone of High-Strength Low-Alloy Steels,” Ironmaking & Steelmaking, vol. 44, pp. 1-11, 2017.
[24] S. Matsuda and N. Okumura, “Effect of Dispersion State of TiN on the Austenite Grain Size of Low-Carbon Low Alloy,” The Iron and Steel Institute of Japan, vol. 62, no. 9, pp. 1209-1218, 1976.
[25] E. Robert, R. Hill, and R. Abbaschian, “Physical Metallurgy Principles,” PWS-Kent, 3Ed, Boston, 1992.
[26] K. Yamamoto, T. Hasegawa, and J.-I. Takamura, “Effect of Boron on Intra-Granular Ferrite Formation in Ti-Oxide Bearing Steels,” ISIJ International, vol. 36, no. 1, pp. 80-86, 1996.
[27] S. Suzuki, K. Ichimiya, and T. Akita, “High Tensile Strength Steel Plates for Shipbuilding with Excellent HAZ Toughness―JFE EWEL Technology for Excellent Quality in Large Heat Input Welded Joints―,” JFE Giho, no. 5, pp. 9-24, 2004.
[28] 黃文星, 付建勛, 鋼鐵冶煉之二次精煉與氧化物冶金: 合記, 2012.
[29] 張同生, 王德永, 劉承軍, 張永啟, 姜茂發, “鋼液中鎂合金復合脫氧熱力學分析,” 材料與冶金學報, no. 2, pp. 79-84, 2014.
[30] 陳斌, 王燦國, 王新華, “鎂脫氧熱力學和動力學計算,” 鋼鐵研究, vol. 36, no. 2, pp. 34-37, 2008.
[31] 趙鳳林, T.EI.Gammal, and W.Dabl, “鋼水噴鎂精煉及其對鋼性能的影響,” 北京鋼鐵學院學報, vol. 3, no. 1, 1983.
[32] R. Kiessling and N. Lange, “Non-metallic Inclusions in Steel,” Iron and Steel Institute, vol. 2, 1966.
[33] L. Zhang and B. G. Thomas, "Inclusions in Continuous Casting of Steel," In XXIV National Steelmaking Symposium, Morelia, Mich, Mexico, vol. 26, p. 28. 2003.
[34] C. Mapelli, “Non-Metallic Inclusions and Clean Steel,” la Metallurgia Italiana, no. 6, 2008.
[35] Y. Payandeh and M. Soltanieh, “Oxide Inclusions at Different Steps of Steel Production,” Journal of Iron and Steel Research, vol. 14, no. 5, pp. 39-46, 2007.
[36] N. Ånmark, A. Karasev, and P. G. Jönsson, “The Effect of Different Non-Metallic Inclusions on The Machinability of Steels,” Materials, vol. 8, no. 2, pp. 751-783, 2015.
[37] L. Holappa and A. Helle, “Inclusion Control in High-Performance Steels,” Journal of Materials Processing Technology, vol. 53, no. 1, pp. 177-186, 1995.
[38] K. Zhu and Z. Yang, “Effect of Mg Addition on The Ferrite Grain Boundaries Misorientation in HAZ of Low Carbon Steels,” Journal of Materials Science & Technology, vol. 27, no. 3, pp. 252-256, 2011.
[39] C. Sims and F. Dahle, “Effect of Aluminum on the Properties of Medium-carbon Cast Steel,” Transactions of the American Foundrymen's Association, pp. 65-132, 1938.
[40] 羅新傑, “結構用鋼胚中介在物之研究,” 國立成功大學材料科學及工程學系, 碩士論文, 2012.
[41] Y. Sahai and T. Emi, Tundish Technology for Clean Steel Production: World Scientific, 2008.
[42] H. Ohta and H. Suito, “Deoxidation Equilibria of Calcium and Magnesium in Liquid Iron,” Metallurgical and Materials Transactions B, vol. 28, no. 6, pp. 1131-1139, 1997.
[43] O. Adaba, “Formation and Evolution of Spinel in Aluminum Killed Calcium Treated Linepipe Steels,” MS thesis, Missouri University of Science and Technology, 2015.
[44] C.-M. Fan and W.-S. Hwang, “Study of Optimal Ca-Si Injection Position in Gas Stirred Ladle Based on Water Model Experiment and Flow Simulation,” Ironmaking & Steelmaking, vol. 29, no. 6, pp. 415-426, 2002.
[45] J. H. Park and H. Todoroki, “Control of MgO.Al2O3 Spinel Inclusions in Stainless Steels,” ISIJ International, vol. 50, no. 10, pp. 1333-1346, 2010.
[46] T. Zhang, Y. Min, C. Liu, and M. Jiang, “Effect of Mg Addition on the Evolution of Inclusions in Al–Ca Deoxidized Melts,” ISIJ International, vol. 55, no. 8, pp. 1541-1548, 2015.
[47] S. Kimura, K. Nakajima, and S. Mizoguchi, “Behavior of Alumina-Magnesia Complex Inclusions and Magnesia Inclusions on The Surface of Molten Low-Carbon Steels,” Metallurgical and Materials Transactions B, vol. 32, no. 1, pp. 79-85, 2001.
[48] S.-F. Yang, J.-S. Li, L.-F. Zhang, P. Kent, and Z.-F. Wang, “Behavior of MgO.Al2O3 Based Inclusions in Alloy Steel During Refining Process,” International Journal of Iron and Steel Research, vol. 17, no. 7, pp. 1-6, 2010.
[49] X. Zhang, J. Li, L. Bai, and L. Chen, “Effect of Fe-Al-Mg Deoxidizer on Cleanliness and Mechanical Properties of SS400 Steel Sheet,” Teshugang (Special Steel), vol. 27, no. 2, pp. 52-53, 2006.
[50] Z. Wu, W. Zheng, G. Li, H. Matsuura, and F. Tsukihashi, “Effect of Inclusions Behavior on the Microstructure in Al-Ti Deoxidized and Magnesium-Treated Steel with Different Aluminum Contents,” Metallurgical and Materials Transactions B, vol. 46, no. 3, pp. 1226-1241, 2015.
[51] H. Itoh, M. Hino, and S. Ban-Ya, “Thermodynamics on The Formation of Spinel Non-Metallic Inclusion in Liquid Steel,” Metallurgical and Materials Transactions B, vol. 28, no. 5, pp. 953-956, 1997.
[52] R. Hadley and G. Derge, “Equilibrium between Titanium in Liquid Iron and Titanium Oxides,” Journal of the Institute of Metals, vol. 7, no. 1, pp. 55-60, 1955.
[53] Z. Chen, M. Loretto, and R. Cochrane, “Nature of Large Precipitates in Titanium-containing HSLA Steels,” Materials Science and Technology, vol. 3, no. 10, pp. 836-844, 1987.
[54] H. Wentrup and G. Hieber, “Umsetzungen Zischen Aluminium und Sauerstoff in Eisenschmelzen,” Steel Research International, vol. 13, no. 1, pp. 15-20, 1939.
[55] E. L. Evans and H. Sloman, “Studies in The Deoxidation of Iron-Deoxidation by Titanium,” Journal of The Iron and Steel Institute, vol. 174, no. 4, pp. 318, 1953.
[56] C.-H. Chang, I.-H. Jung, S.-C. Park, H.-S. Kim, and H.-G. Lee, “Effect of Mg on The evolution of Non-Metallic Inclusions in Mn–Si–Ti Deoxidised Steel during Solidification: Experiments and Thermodynamic Calculations,” Ironmaking & Steelmaking, vol. 32, no. 3, pp. 251-257, 2005.
[57] N. Iwamoto, H. Yoshida, and A. Adachi, “Study of the Oxide Inclusions in Fe-Ti and Fe-V Alloys,” Tetsu-to-Hagané, vol. 56, no. 13, pp. 1646-1660, 1970.
[58] C. Mutale, A. Tuling, and S. Verryn, "TEM Study of Solid Titanium Oxides Inclusions in Steel Melt at 1600 oC," VII International Conference on Molten Slags Fluxes and Salts, pp. 293-297, 2014.
[59] Y. Kojima, M. Inouye, and J.-I. Ohi, “Titanium Oxide in Equilibrium with Iron-Titanium Alloys at 1600 oC,” Arch Eisenhuttenwesen, vol. 40, no. 9, pp. 667-671, 1969.
[60] A. Smellie and H. Bell, “Titanium Deoxidation Reactions in Liquid Iron,” Canadian Metallurgical Quarterly, vol. 11, no. 2, pp. 351-361, 1972.
[61] D. Janke and W. Fischer, “Deoxidation Equilibria of Ti, Al and Zr in Fe Melts at 1600 C,” Arch. Eisenhuttenwes., vol. 47, no. 4, pp. 195-198, 1976.
[62] K.-I. Suzuki and K. Sanbongi, “Equilibrium Study on Deoxidiation of Steel With Ti,” Transactions of the Iron and Steel Institute of Japan, vol. 15, no. 12, pp. 618-627, 1975.
[63] W.-Y. Cha, T. Miki, Y. Sasaki, and M. Hino, “Identification of Titanium Oxide Phases Equilibrated with Liquid Fe-Ti Alloy Based on EBSD Analysis,” ISIJ International, vol. 46, no. 7, pp. 987-995, 2006.
[64] V. Y. Dashevskii, A. AA, K. AG, and M. MA, “Deoxidation Equilibrium of Titanium in the Iron-Nickel Melts,” ISIJ International, vol. 50, no. 1, pp. 44-52, 2010.
[65] H. Okamoto, L. Kacprzak, and P. Subramanian, Binary Alloy Phase Diagrams: ASM international, 1996.
[66] S. Zhang, N. Hattori, M. Enomoto, and T. Tarui, “Ferrite Nucleation at Ceramic/ Austenite Interfaces,” ISIJ International, vol. 36, no. 10, pp. 1301-1309, 1996.
[67] T. Zhang, D. Chen, Y. Min, C. Liu, and M. Jiang, “Effect of Mg and Ti Complex Addition on Behavior of Inclusions in Al Deoxidized Melts,” ICS2015, Montreal, 2015.
[68] C.-L. Hu, B. Song, G.-Y. Song, W.-B. Xin, and J.-H. Mao, “Effect of Mg Content on Inclusions and Microstructure of Steel by Ti-Mg Complex Deoxidation,” The Chinese Journal of Nonferrous Metals, vol. 23, no. 11, 2013.
[69] C.-H. Chang, I.-H. Jung, S.-C. Park, H.-S. Kim, and H.-G. Lee, “Effect of Mg on The Evolution of Non-Metallic Inclusions in Mn–Si–Ti Deoxidized Steel during Solidification: Experiments and Thermodynamic Calculations,” Ironmaking & Steelmaking, vol. 32, no. 3, pp. 251-257, 2005.
[70] M. Lv, X. Li, Y. Min, C. Liu, and M. Jiang, “Effect of Mg Treatment on Characteristics of Inclusions and Microstructure in FH40 Ship-Building Steel,” Journal of Metallurgical Engineering, vol. 2, no. 4, pp. 169-176, 2015.
[71] 徐龍雲, 楊健, 王叡之, 祝凱, 周樂君, 王萬林, “Mg 脫氧對船板結構鋼中夾雜物的影響,” 寶鋼技術, no. 6, pp. 1-6, 2014.
[72] T.-S. Zhang, D.-Y. Wang, C.-W. Liu, M.-f. Jiang, L. Ming, W. Bo, and S.-X. Zhang, “Modification of Inclusions in Liquid Iron by Mg Treatment,” International Journal of Iron and Steel Research, vol. 21, pp. 99-103, 2014.
[73] J. Yang, M. Kuwabara, T. Sakai, N. Uchida, Z. Liu, and M. Sano, “Simultaneous Desulfurization and Deoxidation of Molten Steel with in situ Produced Magnesium Vapor,” ISIJ International, vol. 47, no. 3, pp. 418-426, 2007.
[74] J. Yang, T. Yamasaki, and M. Kuwabara, “Behavior of Inclusions in Deoxidation Process of Molten Steel with in situ Produced Mg Vapor,” ISIJ International, vol. 47, no. 5, pp. 699-708, 2007.
[75] S. Saxena, "Production of Ultra-clean Steels with Better Mechanical Properties with Magnesium Treatment," Seventy Ninth Conference of the Steelmaking Division of the Iron and Steel Society, pp. 89-96. 1996.
[76] M. Tateyama, Y. Hiraga, S. Yaniguchi, T. Okimura, and K. Hirata, “Deoxidation and Desulfurization of Molten Steel with Mg Containing Wire,” SEAISI Quarterly (Malaysia), vol. 29, no. 4, pp. 43-47, 2000.
[77] I.-H. Jung, S. A. Decterov, and A. D. Pelton, “Critical Thermodynamic Evaluation and Optimization of The Fe–Mg–O System,” Journal of Physics and Chemistry of Solids, vol. 65, no. 10, pp. 1683-1695, 2004.
[78] Y. Ren, L. Zhang, W. Yang, and H. Duan, “Formation and Thermodynamics of Mg-Al-Ti-O Complex Inclusions in Mg-Al-Ti-Deoxidized Steel,” Metallurgical and Materials Transactions B, vol. 45, no. 6, pp. 2057-2071, 2014.
[79] 宋宇, 李光強, 楊飛, “Al-Ti-Mg 複合去氧對鋼中夾雜物及組織的影響 ” 北京科技大學學報, vol. 33, no. 10, pp. 1214-1219, 2011.
[80] T. Zhang, C. Liu, and M. Jiang, “Effect of Mg on Behavior and Particle Size of Inclusions in Al-Ti Deoxidized Molten Steels,” Metallurgical and Materials Transactions B, vol. 47, no. 4, pp. 2253-2262 , 2016.
[81] J. H. Park, S.-B. Lee, and H. R. Gaye, “Thermodynamics of the Formation of MgO-Al2O3-TiOx Inclusions in Ti-Stabilized 11Cr Ferritic Stainless Steel,” Metallurgical and Materials Transactions B, vol. 39, no. 6, pp. 853-861, 2008.
[82] W.-G. Seo, W.-H. Han, J.-S. Kim, and J.-J. Pak, “Deoxidation Equilibria among Mg, Al and O in Liquid Iron inThe Presence of MgO•Al2O3 Spinel,” ISIJ International, vol. 43, no. 2, pp. 201-208, 2003.
[83] K. Fujii, T. Nagasaka, and M. Hino, “Activities of the Constituents in Spinel Solid Solution and Free Energies of Formation of MgO, MgO.Al2O3,” ISIJ International, vol. 40, no. 11, pp. 1059-1066, 2000.
[84] R. Takata, J. Yang, and M. Kuwabara, “Characteristics of Inclusions Generated during Al-Mg Complex Deoxidation of Molten Steel,” ISIJ International, vol. 47, no. 10, pp. 1379-1386, 2007.
[85] A. Pelton, G. Eriksson, D. Krajewski, M. Göbbels, and E. Woermann, “Measurement and Thermodynamic Evaluation of Phase Equilibria in the Mg-Ti-O System,” Zeitschrift für Physikalische Chemie, vol. 207, no. 1-2, pp. 163-180, 1998.
[86] M. I. Pownceby and M. J. Fisher-White, “Phase Equilibria in the Systems Fe2O3-MgO-TiO2 and FeO-MgO-TiO2 between 1173 and 1473 K, and Fe2+-Mg Mixing Properties of Ilmenite, Ferrous-pseudobrookite and Ulvöspinel Solid Solutions,” Contributions to Mineralogy and Petrology, vol. 135, no. 2, pp. 198-211, 1999.
[87] S.-C. Park, I.-H. Jung, K.-S. Oh, and H.-G. Lee, “Effect of Al on The Evolution of Non-Metallic Inclusions in The Mn-Si-Ti-Mg Deoxidized Steel during Solidification: Experiments and Thermodynamic Calculations,” ISIJ International, vol. 44, no. 6, pp. 1016-1023, 2004.
[88] H. Ono and T. Ibuta, “Equilibrium Relationships between Oxide Compounds in MgO-Ti2O3-Al2O3 with Iron at 1873 K and Variations in Stable Oxides with Temperature,” ISIJ International, vol. 51, no. 12, pp. 2012-2018, 2011.
[89] H. Ono, K. Nakajima, S. Agawa, T. Ibuta, R. Maruo, and T. Usui, “Formation Conditions of Ti2O3, MgTi2O4, Mg2TiO4, and MgAl2O4 in Ti–Mg–Al Complex Deoxidation of Molten Iron,” Steel Research International, vol. 86, no. 3, pp. 241-251, 2015.
[90] W.-G. Seo, W.-H. Han, J.-S. Kim, and J.-J. Pak, “Deoxidation Equilibria among Mg, Al and O in Liquid Iron in The Presence of MgO• Al2O3 Spinel,” ISIJ International, vol. 43, no. 2, pp. 201-208, 2003.
[91] H. Itoh, M. Hino, and S. Ban-Ya, “Thermodynamics on The Formation of Non-Metallic Inclusion of Spinel (MgO• Al2O3) in Liquid Steel,” Tetsu-to-Hagané, vol. 84, no. 2, pp. 85-90, 1998.
[92] H. Ono, K. Nakajima, R. Maruo, S. Agawa, and T. Usui, “Formation Conditions of Mg2TiO4 and MgAl2O4 in Ti–Mg–Al Complex Deoxidation of Molten Iron,” ISIJ International, vol. 49, no. 7, pp. 957-964, 2009.
[93] H. Ono, K. Nakajima, T. Ibuta, and T. Usui, “Equilibrium Relationship between the Oxide Compounds in MgO–Al2O3–Ti2O3 and Molten Iron at 1873 K,” ISIJ International, vol. 50, no. 12, pp. 1955-1958, 2010.
[94] 鄭萬, “Al-Ti-Mg (Ca) 複合脫氧對抗大變形管線鋼中的夾雜物,鋼的組織及性能的影響研究,” 博士論文, 武漢科技大學, 2014.
[95] G. Sigworth and J. F. Elliott, “The Thermodynamics of Liquid Dilute Iron Alloys,” Metal Science, vol. 8, no. 1, pp. 298-310, 1974.
[96] M. Hino and K. Ito, Thermodynamic Data for Steelmaking: Tohoku University Press, 2010.
[97] S. Seetharaman, Fundamentals of Metallurgy: Elsevier, 2005.
[98] D. R. Gaskell, Introduction to the Thermodynamics of Materials: CRC Press, 2008.
[99] T.-K. Lee and K. HJ, “Effect of Inclusion Size on the Nucleation of Acicular Ferrite in Welds,” ISIJ International, vol. 40, no. 12, pp. 1260-1268, 2000.
[100] Ø. Grong, L. Kolbeinsen, C. van Der Eijk, and G. Tranell, “Microstructure Control of Steels through Dispersoid Metallurgy Using Novel Grain Refining Alloys,” ISIJ International, vol. 46, no. 6, pp. 824-831, 2006.
[101] Ø. Grong, A. Kluken, H. Nylund, A. Dons, and J. Hjelen, “Catalyst Effects in Heterogeneous Nucleation of Acicular Ferrite,” Metallurgical and Materials Transactions A, vol. 26, no. 3, pp. 525-534, 1995.
[102] K. Yamamoto, T. Hasegawa, and J.-I. Takamura, “Effect of Boron on Intra- Granular Ferrite Formation in Ti-Oxide Bearing Steels,” ISIJ International, vol. 36, no. 1, pp. 80-86, 1996.
[103] H.-H. Jin, J.-H. Shim, Y. W. Cho, and H.-C. Lee, “Formation of Intragranular Acicular Ferrite Grains in a Ti-Containing Low Carbon Steel,” ISIJ International, vol. 43, no. 7, pp. 1111-1113, 2003.