簡易檢索 / 詳目顯示

研究生: 黃惟聖
Huang, Wei-Sheng
論文名稱: 以有機金屬化學氣相沈積技術及熱壓製程製備奈米級碳化鉻/氧化鋁複合陶瓷之研究
Investigation of chromium carbide/alumina Nano-composite via Metal Organic Chemical Vapor Deposition and Densification Process
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 94
中文關鍵詞: 有機金屬化學氣相沈積法氧化鉻碳化鉻氧化鋁奈米複合材料
外文關鍵詞: alumina, MOCVD, chromium carbide, chromium oxide, nanocomposite
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用有機金屬化學氣相沈積法(MOCVD)與流體床(Fluidized Bed)技術,成功製備出奈米碳化鉻(Cr3C2、Cr7C3)/氧化鋁(Al2O3)陶瓷複合粉體,並研究熱壓燒結過程中,環境對材料內部發生的反應及微結構之影響,並探討氧化鉻(Cr2O3)/氧化鋁(Al2O3)固溶材料中之微結構。

    實驗結果顯示,利用有機金屬化學氣相沈積法(MOCVD)與流體床(Fluidized Bed)技術,流體化效果較佳時,先導物經裂解後,以顆粒狀的型態沈積於氧化鋁的顆粒表面,反之,沈積型態則以島狀或鍊狀的方式居多。其中,島狀或鍊狀披覆物,相當於許多顆粒狀披覆物相互連結,單顆尺寸大約為30nm,經由成分分析判定沈積相為非晶質之氧化鉻。

    氧化鉻與碳化鉻的轉換反應,將受反應物碳活性影響。氧化鉻/氧化鋁複合粉體,在高溫通以氬氣作為保護氣氛之石墨爐體中,一方面可藉由與粉體接觸之活性較大的碳,使氧化鉻反應成Cr3C2;另一方面,亦可於爐體中,由爐體或坩鍋等提供之碳游離基,藉氣體攜帶擴散進入粉體中,雖活性較小,卻可使氧化鉻反應成Cr7C3。另外,當粉體密度較高,因使氣體不易進入,粉體中之碳游離基少,故相同的粉末於熱壓燒結環境中,將無法形成Cr3C2。

    氧化鉻/氧化鋁之複合粉體於1400℃真空環境中進行熱壓燒結時,將有兩反應同時進行,一為氧化鉻與氧化鋁之間之固溶反應,二為氧化鉻與碳游離基之碳化反應,其中又以固溶反應速率較快,故此時燒結體為碳化鉻及氧化鋁固溶體之複合材料。其中碳化鉻將以三種型態存在於材料中,包含微米、次微米且位於晶界上;奈米(約80nm)位於晶界上,及奈米(約30nm)位於晶粒內。燒結體強度可達464 MPa,破壞韌性達5.32 MPa*m1/2。

    The metal-organic chemical vapor deposition (MOCVD) conducted in a fluidized bed has been employed for the preparation of nano-sized chromium carbide and alumina composites. Chromium hexacarbonyl(Cr(CO)6) was decomposed and successfully deposited onto alumina particles. The phase and amount of deposition depend on the deposition time and the state of fluid.

    The crystalline phase and microsturcture of as-deposited powders were characterized by XRD、ESCA and TEM. The result indicated the deposition was amorphous Cr2O3 exastinagas island-like (chain) type or individual type.

    In order to obtain Cr3C2/Al2O3 composite powder, heat treatment in graphite furnace is required. The Cr7C3/Al2O3 composite was produced from as-deposited powder by hot-pressed at 1400℃ in vacuum for 1h due to carbonization by the of carbon radicals from graphite mould. At high temperature, the conversion of chromium oxide to Cr3C2 or Cr7C3 depends on the activity of carbon.

    The microstructure of the dense composites was also discussed. The inclusion(Cr7C3) in Cr7C3/Al2O3 composite existed as three types. The matrix Al2O3 transformed into solid solution with a small quantity of Cr2O3. Some pores inside grain induced dislocation cell or low angle grain boundary because of large internal stress generated during cooling from the fabrication temperature 1400℃.

    論文摘要……………..……………………………………………..Ⅰ Abstract……..……………………………………………………….Ⅲ 總目錄………..……………………………………………………..Ⅴ 圖目錄……………..………………………………………………..Ⅷ 表目錄……..……………………………………………………..ⅩⅢ 第一章 緒論…………………………………...……….…………....1 1-1 前言……………….……………………………………….….…1 1-2研究目的及重點….…………………...………………………...2 第二章 理論基礎…………….…………………….………………4 2-1 陶瓷基複合材料…………………..….…………….…………...4 2-1-1 陶瓷基複合材料韌化方式……….…………………….…...4 2-1-2 奈米複合材料……………………….……………………....5 2-2 化學氣相沈積法及流體床技術…………………….…….…...10 2-2-1 CVD製程………………………………………….……...11 2-2-2 MOCVD製程中六羰鉻使用之探討……..…….…….…..14 2-3 鉻之碳化物或氧化物與氧化鋁複合材料…………….……....15 2-3-1 碳化鉻(Cr3C2)/氧化鋁(Al2O3)複合材料…………..15 2-3-2 碳化鉻(Cr7C3)/氧化鋁(Al2O3)複合材料……..…....15 2-3-3氧化鉻(Cr2O3)/氧化鋁(Al2O3)合金材料…………..16 第三章 材料與實驗步驟…...……………..……..……………....20 3-1 實驗設計…………………………………………….………....20 3-2 實驗設備及合成複合粉體之製程…………………….….…...22 3-2-1 MOCVD與流體床之實驗設計…………………….….....22 3-2-2 實驗材料……………………………………………...…...24 3-2-3合成複合粉體之製程………………………………...…...24 3-3 複合粉體熱處理之製程………………………….……….…...26 3-4 複合材料之燒結製程……………………………………….....26 3-4-1起始粉末的製備………………………………………......28 3-4-2熱壓燒結參數…………….…………………………….....28 3-5 複合粉體熱處理前後之性質分析……………….……….…...28 3-5-1 複合粉體之相分析……………………………..….……...28 3-5-2 複合粉體之表面型態之觀察………………………...…...30 3-5-3 複合粉體之ESCA成分分析……………………….…....30 3-5-4 碳硫分析儀…………………………………..…………....31 3-6 燒結體的性質測定…………………………….……………....31 3-6-1密度的測定…………………………………..…………....31 3-6-2 X光繞射分析………………….………………………....32 3-6-3 掃瞄式電子顯微鏡(SEM)試樣之製作及觀察……….32 3-6-4穿透式電子顯微鏡(TEM)試樣之製作及觀察……….33 3-7 機械性質之量測…………………………………….………....33 3-7-1彎曲強度的測定…………………………..……………....33 3-7-2表面微硬度測試……………………..…………………....34 3-7-3破壞韌性分析…………………………………..………....35 第四章 結果與討論…………………………..…..……………....37 4-1複合粉體的特性…………………………………….………....37 4-1-1合成奈米複合粉體……………………………..………....37 (a)晶相分析---六羰鉻的熱分解………………...………..37 (b)沈積物微結構觀察………………………….…...…….40 (c) 球磨後粉末之表面型態…...………………...…….….45 4-1-2 複合粉體之熱處理………….……………….....………....47 4-2 碳化鉻/氧化鋁燒結體之特性…………………………….…...57 4-2-1 碳化鉻/氧化鋁複合粉體之燒結……...………….……....57 4-2-2氧化鉻/氧化鋁複合粉體之燒結……...…….....………….61 4-2-3 微結構觀察………………………………….……..……...63 4-2-4 披覆相對燒結體之影響………………….….....…….…...79 第五章 結論…………………………………………………….….85 參考文獻…….……………..…………………………………….…88 致謝… … … … … … … … … … … ...… … … … … … … … … … … … … ..93 作者簡歷… … … … … … … … ..… … … … … … … … … … … … … … ..94 Fig. 2.1 The classification of ceramic nanocomposites[3]….…………..7 Fig. 2-2 Schematic diagram of internal stresses around the particles and crack propagations in the case of SiC/Al2O3 matrix.[21]……...9 Fig. 2-3 The five consecutive processes of metal-organic chemical vapor deposition.[29]…………………...……………….……12 Fig. 2-4 Cr-C phase diagram…………………………………………18 Fig. 2-5 Cr2O3-Al2O3 phase diagram…………………………………19 Fig. 3-1 The flowchart of experiment…………………………...……21 Fig. 3-2 Schematic diagram of MOCVD and fluidized bed reactor….23 Fig. 3-3 Schematic diagram of hydrogen reducing furnace……..…...27 Fig. 3-4 The temperature and pressure profiles for hot-pressed alumina composite……………………………………………………29 Fig. 4-1 XRD patterns of as-deposited powders prepared by MOCVD at 400℃ for 1hr………………………………………….….38 Fig. 4-2 TEM image of Cr2O3 deposited alumina powder. (400℃ for 1 hr.), (a) bright-field image; (b) diffraction pattern of A in (a); (c) EDS analysis of A in (a)…………………………………39 Fig. 4-3 ESCA spectrum of as-deposited Cr2O3 – Al2O3 composite powders. (400℃,1hr)…………………………………….….41 Fig. 4-4 TEM micrographs of Cr2O3/Al2O3 composite powder prepared by MOCVD at 400℃ in N2 for 1hr. (a) island like deposited; (b) individual deposited…….……………………………….42 Fig. 4-5 Schematic illustration of nucleation and thin film formation[59]. (a) Nucleation (b) Grain Growth (c) Coalescence (d) Filling of Channels (e) Film Growth[44,45]……...……………………....44 Fig. 4-6 TEM micrograph of Cr2O3-Al2O3 composite powder prepared by MOCVD in newly design chamber at 400℃ in He for 1hr…………...……………………………………………....46 Fig. 4-7 TEM image of composite powders. Samples were ball milled (a) individual ;(b) island-like second phase……….…...……48 Fig. 4-8 Influence of the CO pressure on the temperature of the Cr2O3-Cr3C2-C equilibrium……...………………………………....50 Fig. 4-9 XRD patterns of the composite powders. Samples were heated in Al2O3 crucible at (a)700℃; (b)800℃; (c)900℃; (d)1000℃. in alumina furnace in 10H2/90N2 atmosphere for 2hr...….…52 Fig. 4-10 XRD patterns of the composite powders. Samples were heated in graphite crucible at (a)600℃; (b)700℃; (c)800℃; (d)900℃. in alumina furnace in 10H2/90N2 atmosphere for 2hr…………...………………………………………………55 Fig. 4-11 XRD patterns of the composite powders heated at 1250℃ for 2hr………...…………………………………………………56 Fig. 4-12 XRD patterns of the composite powders. Samples were heated at 1250℃ in Ar atmosphere for 2hr before sintering..58 Fig. 4-13 Isothermal section of the system of Cr-C-O at 1200℃……59 Fig. 4-14 XRD patterns of chromium carbide/alumina composites. Samples were heated at 1250℃ in graphite crucible and furnace for 2hr.and hot pressed at 1400℃ in vacuum for 1hr …………………………………………………………..60 Fig.4-15 XRD patterns of chromium carbide/alumina composites. Samples were hot pressed at 1400℃ in vacuum for 1hr…....62 Fig.4-16 TEM micrograph bright field image of chromium carbide / alumina nanocomposite. Sample were hot press at 1400℃ in vacuum for 1hr……...…………………………………….…64 Fig. 4-17 TEM micrograph bright field of nanocomposites (a) micron inclusion; (b) sub-micron inclusion……...………………….66 Fig. 4-18 (a) TEM micrograph bright field of nanocomposites with nano-sized inclusion. (b) micrograph in higher magnification of P in (a)…………...……………………………………….67 Fig. 4-19 TEM micrograph of chromium carbide/alumina nano-composites. Samples were hot pressed at 1400℃ in vacuum for 1hr(a) bright field image; (b)、(c) dark-field image…....68 Fig. 4-20 (a) TEM mocrograph bright image of chromium carbide/alumina nanocomposites. Samples were hot pressed at 1400℃ in vacuum for 1hr. (b) micrograph in higher magnification of P in (a)………………...…………………..69 Fig. 4-21 Forming mechanism of the inter-Cr7C3/(Cr,Al)2O3 nanocomposites during sintering……...…………………….71 Fig. 4-22 Forming mechanism of the intra-Cr7C3/(Cr,Al)2O3 nanocomposites during sintering……………...…………….73 Fig. 4-23 TEM micrograph bright field image of chromium carbide/alumina nanocomposites. Samples were hot pressed at 1400℃ in vacuum for 1hr…………………........………......74 Fig. 4-24 TEM micrograph of chromium carbide/alumina nanocomposites. Samples were hot pressed at 1400℃ in vacuum for 1hr. (a) bright field image. (b) dark field image. (c) EDS of A in (a)…………………………...…………………75 Fig. 4-25 TEM lattice image of interface between partA and Al2O3 grain in chromium carbide/alumina nanocomposites. Samples were hot pressed at 1400℃ in vacuum for 1hr……………...77 Fig. 4-26 TEM micrograph bright image of chromium carbide/alumina nanocomposites. Samples were hot pressed at 1400℃ in vacuum for 1hr………………...…………………………….78 Fig. 4-27 SEM micrograph of fracture surface of chromium carbide/alumina nanocomposites. Samples were hot pressed at 1400℃ in vacuum for 1hr.(a) intergranular fracture; (b) transgranular fracture………………...……………………...80 Fig. 4-28 SEM micrograph showing the propagation crack of chromium carbide/alumina nanocomposites Arrows indicate crack bridging in (a); crack deflection in (b); micro-crack in (c) respectively.. ………………………………………………..81 Fig. 4-29 XRD patterns of Cr2O3/Al2O3 solid solution. Samples were prepared by newly designed fluidized bed and hot pressed at 1400℃ in vacuum for 1hr.………………………………….82 Fig. 4-30 OM macrographs of samples after hot pressed at 1400℃ in vacuum for 1 hr. (a) composite powders with more island-like Cr2O3; (b) composite powders with more individual Cr2O3...84 Table 2-1 Summary of the reported phase of coating from Cr(CO)6...13 Table 3.1 Characteristics of Al2O3 powders(supplied by Alcoa)…25 Table.4-1 Carbon content of composite powders after heated in 10H2/90N2 atmosphere in Al2O3 crucible in for 2hr. Samples were at 700℃, 800℃,and 1000℃ respectively…….……..53

    1. 黃啟祥、林江財,陶瓷技術手冊(下),1994.
    2. W.H.Tuan, and R.J. Brook, “The Toughness of Alumina with Nickel Inclusions”,J. European Ceram. Soc.,6,31(1990)
    3. K. Niihara, "New Design Concept of Structural Ceramics-Ceramic Nanocomposite." J. Ceram. Soc. Jpn., 99[10] 974-82(1991).
    4. M. Nawa, T. Sekino, K. Niihara, “Microstructure and Mechanical Properties of Al2O3-Mo Nanocomposites,” J. Jpn Soc. of powd. And Powd. Metal., 39, 1104-1108(1992)
    5. A. Nakahira, K.Niihara,”Sintering Behavior and Consolidation Process for Al2O3/SiC Nanocomposites,” J. Ceram. Soc. Jpn., 100[4] 448-453(1992)
    6. C.T.Fu and J.M Wu,”Microstructure and mechanical Properties of Cr3C2 Particulate Reinforced Al2O3 Matrix Composites,”J.Mater. Sci., 29[10-13] 2617-2677 (1994)
    7. C.T. Fu, A.K. Li and J.M. Wu,”Effects of Oxidation of Cr3C2 Particlate Reinforced Al2O3 Matrix Composites on Microstructure and Mechanical Structure Properties,” J. Mater. Sci.,28 [23-24] 6285-6294 (1993)
    8. K.M. Shu,C.T. Fu and J.M. Liu,”Electrodicharge-Maching of Al2O3/Cr3C2 composites,”J. Mater. Sci. Letter.,13 [13-18] 1146-1148 (1994)
    9. C. T. Fu, A. K. Ki and J. M. Wu, “Effects of Post-Sinter Hot Isostatic pressing Processes on Microstructure and Mechanical Properties of Al2O3-Cr3C2 Composites,” Bri. Cerm. Trans., 93[5], 178-182(1994)
    10. 涂國基,”常壓燒結Al2O3/Cr3C2複合材料機械性質和微結構之探討”, 國立成功大學材料科學及工程學系碩士論文, 1994
    11. 黃俊傑,”Cr3C2/Al2O3射出成型技術之開發及性質研究”, 國立成功大學材料科學及工程學系碩士論文, 1995
    12. Bradt, R. C., “Cr2O3 solid solution hardening of Al2O3.” J. Am. Ceram. Soc., 1967,50(1), 54-55.
    13. B. B. Chate, W. C. Smith, C. H. Kim, D. P. H. Hasselman and G. E. Kane,”Effect of Chromia Alloying on Machining Performance of Alumina Ceramic Cutting Tools,” Ceramic Bulletin Vol.54, No. 2(1975) 210-215
    14. Davies, T.J., Emblem, H. G., Harabi, A., Nwobodo, C. S., Oqwu, A. A. and Tsantzlaou, V., “Characterisation and properties of alumina-chrome refratories. Br Ceram. Trans. J., 1992, 91, 71-76
    15. Harabi, A. and Davies, T. J., “Mechanical properties of sintered alumina-chromia refractories.” Br Ceram. Trans,1995, 94(2), 79-84.
    16. R. W. Rice, “Toughening in Ceramics Particulate and Whisker Composites”, Ceram. Eng. Sci. Proc, 11[7-8] p667-694(1990)
    17. K.T. Faber and A. G. Evans, “Crack Deflection Process-I. Theory “, Acta Metall., 31 [4]565-79(1983)
    18. G. Wei and P. Becher, “Improvement in Mechanical in SiC by the Addition of TiC Particulate,” J. Am. Ceram. Soc., 67[8] 57191(1984)
    19. T. Ohji, T. Hiranom A.Nakahira, and K.Niihara, “Particle/Matrix Interface and Its Role in Creep Inhibition Of Alumina/Silicon Carbide Nanocomposites,” J. Am. Ceram. Soc., 79[1]33-45(1996)
    20. W. Clegg, New way to Make Tough Ceramics, Interceram, Vol.40 No.6 (1991)
    21. T. Ohji, Y. Jeong, and K. Niihara (1998) “Strengthening and toughening mechanisms of ceramic nanocomposites,” J. Am. Ceram. Soc.,81(6)1453-1460(1991)
    22. Tateoki Iizuka, Toshiro Murao, “Microstructures and Properties of Mo5Si2-Particle-Reinforced Si3N4-Matrix Composites,” J. Am. Ceramic. Soc., 85{4} 954-60(2002).
    23. 金宗哲,新型陶瓷材料手冊,江蘇科學技術出版社(1995).
    24. 林慶章,”利用MOCVD及燒結製程製備奈米鉬/氧化鋁複合材料及其微結構發展”,國立台灣大學材料科學及工程學研究所 (2000)
    25. 李正中, “;薄膜光學及鍍膜技術”, 藝軒圖書出版社(1999)
    26. 李明東, “添加氮化鈦,碳化鈦及表面披覆氮化鈦之碳化鈦於氮化矽基複合材料的研究”, 國立成功大學材料科學及工程學研究所 (1994)
    27. H. Itoh, K. Hattori, S. Naka, “Rotary Powder Bed Chemical Vapor Deposition of Titanium Nitride on Spherical Iron Powder,” J. Mater. Sci., 24 (1989)3643-46.
    28. S. Morooka, “Electroconductivity of Sintered Bodies of α-Al2O3-TiN composites prepared by CVD reaction in a Fluidized Bed,” J. Mater. Sci., 28(1993)3168-72
    29. Wei, W. J. and M. H. Lo (1998)”Processing and properties of (Mo, Cr)oxycarbides from MOCVD,” Appl. Organometal. Chem, 12, p201-220
    30. 羅名宏,”鉻、鉬羰化物的披覆製程與鍍層性質性質研究”,國立台灣大學材料科學及工程學研究所 (1996)
    31. M. H. Lo and W. J. Wei, “Processingand Properties of (Cr,Mo) Oxycarbides from MOCVD,” Appl. Oragnometal Chem., Vol. 12,1-20 (1998)
    32. W. Hieber and E. Romberg, Z. Anorg. Allg. Chem., 221 (332), (1935).
    33. J. J. Lander, and L. H. Germer, “Plating Molybdenum,Tungsten, and Chromium by Thermal Decomposition of Their Carbonyls,”American Institute of Mining and Metallurgical Rnginerrs,Eng.Tech.Pub.No.2295,Sep.(1947)
    34. M.H. Lo and W.C.J. Wei,”analysis of (Cr,Mo) Oxycarbide Film Grown on Stainless Steel via Metallooragnic Chemical Vapor Deposition”,J.Am.Ceram.Soc.,80[4] 886-892(1997)
    35. 陳志榮,”納米碳化鉻/及鉬/氧化鋁基複合材料之製程與分析,” 國立台灣大學材料科學及工程學研究所,2000
    36. J. R. Lindgren, W. R. Johnson, Surf. Coat. Technol. 32 (1987),p240.
    37. M. Fuoukawa, T. kitada, O. Nakano, Nippon Tungsten Rev. 20(1987) 18.
    38. The Editiorial Staff Reference Publications ASM International, “ASM Engineered Materials Reference Book.”
    39. P. K. Rajagopalan, T. S. Krishnan, D. K. Bose,”Development of carbothermy for the preparation of hepta chromium carbide,” Journal of Alloys and Compounds 297(2000)L1-L4
    40. Davis T J, Emblem HG, Nwobodo S, Ogwu AA, Tasantzalou V. J. Mater. Sci. 1991;26:1061.
    41. 彭康泰,”以有機金屬化學氣相沈積技術及燒結製程製備奈米級矽化鉬/氮化矽複合陶瓷之研究,” 國立成功大學材料科學及工程學研究所 (2002)
    42 A. G. Evans, “Fracture Toughness Determination by Indentation,” J. Am. Ceram. Soc., 59(7-8)371-72(1976)
    43. F. Maury, D. Oquab, J. C. Manse and R. Morancho,”Structural Characterization of Chromium Carbide Coatings Deposited at Low Temperature by Low Pressure Chemical Vapor Decomposition Using Dicumene Chromium,” Surface and Coatings Technology, 41(1990)51-61
    44 J. E. Knap, B. Pesetsky and F. N. Hill, Plating, 53(1966)772
    45. T. Ivanova, M. Surtchev, K. Gesheva, “Investigation of CVD molybdenum oxide films,” Mater. Letters, 53(2002)250-257
    46. 莊達人,VLSI製造技術,高立圖書有限公司(1995)。
    47. F. Schuster and F. Maury “Influence of Organochrium Precursor Chemistry on The Microstructure of MOCVD Chrimium Carbide Coatings,” Surface and Coating Technology,43/44(1990) 185-198
    48. Doh-Hyung Riu, Young-Min Kong, Hyoun-Ee Kim,”Effect of Cr2O3 Addition o Microstructural Evolution and Mechanical Properties of Al2O3,” J. European Ceram. Soc.,20(2000) 1475-1481
    49. W. F. Chu and A. Rahmel,”The Conversion of Chromium Oxide to Chromium Carbide,”Oxidation of metals, Vol. 15, Nos. ¾ 1981 p331-337
    50. M. T. Hernandez, M. González, A. De Pablos,”C-diffusion During Hot Press in Al2O3-Cr2O3 system,” Atcta Matrialia 51 (2003) 217-228
    51. 張立德,牟季美,”奈米材料和奈米結構”
    52. Ownby Pd, Jungquist GE. J. Amer. Ceram. Soc.1972 55:433
    53. P. Pokorny, A. Ibarra, J. Phys: Condens. Matter 1993;5:7387

    下載圖示 校內:2004-07-15公開
    校外:2004-07-15公開
    QR CODE