簡易檢索 / 詳目顯示

研究生: 楊長春
Yang, Chang-Chun
論文名稱: 以水熱法研製含有合成金屬之二氧化鈦超級電容
Titanium Dioxide with Synthesized Metals for Supercapacitors Prepared by Hydrothermal
指導教授: 王永和
Wang, Yeong-Her
方炎坤
Fang, Yan-Kun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 84
中文關鍵詞: 高溫水熱法合成退火還原氧化石墨烯金屬氧化物奈米複合材料超級電容二氧化鈦
外文關鍵詞: nano-structured metal oxide, annealing, reduced graphene oxide, hydrothermal treatment, supercapacitor, TiO2 material, ruthenium (Ru)
相關次數: 點閱:140下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在使用高溫水熱法合成含有還原氧化石墨烯和金屬奈米複合材料與二氧化鈦,經由退火改善原本二氧化鈦奈米複合材料的特性,以應用在超級電容之製作。首先將不同反應後的材料進行微拉曼光譜,X光繞射,X-ray光電子光譜和掃描式電子顯微鏡分析,了解反應後材料的結構與生成的產物,接著,再藉由化學循環伏安法和充放電等,探討整個超級電容的特性。
    為了提升電極材料的導電度,選擇將銀加入其中,以改善二氧化鈦的導電性,其超級電容值提升了2.5倍;接著,選擇添加具有相當高表面積對質量比例(2000~3000 cm/g)特性的還原氧化石墨烯,提升了超級電容值約為三倍的特性;最後,選擇添加過渡金屬元素釕,因為釕本身擁有許多氧化態(2價,3價,4價,6價和8價),使得電荷儲存不僅僅只有電雙層電容的電荷,也包含偽電容電荷的儲存,因此整個超級電容值更提升了近4倍。

    In this thesis, TiO2 nanocomposites with the incorporation of different nano-structured metals and reduced graphene oxide were synthesized by hydrothermal for supercapacitor applications. The synthesized TiO2 nanocomposites were annealed and then characterized by Microscopes Raman Spectrometer, X-Ray Diffractometer, X-ray Photoelectron Spectroscopy, and Field Emission Scanning Electron Microscopy to indentify the structures and compositions. Then, the characteristics of the supercapacitors were investigated through cyclic voltammetry, and galvanostatic current charge–discharge.
    Silver is considered to be a good conductor for its high conductivity to improve the electrochemical property of TiO2. The incorporation of Ag in TiO2 for supercapacitor enhances the specific capacitance about 2.5 times as compared to that of TiO2. After reaction with the high surface area/mass ratio (2000~3000 cm/g) of reduced graphene oxide, the specific capacitance is 3 times larger than the pure TiO2 material. Ru, filled with a lot of oxidation states (2, 3, 4, 6 and 8), was incorporated in TiO2. The electrical charges are stored not only by electrical double layer capacitive mechanism but also through pseudo-capacitive mechanism. Therefore, the specific capacitance of the nanocomposites can be further improved by 4 times as compared to that of the pure TiO2 material.

    摘要 I ABSTRACT Ⅲ ACKONWLEDGEMENT V CONTENTS VII FIGURE CAPTIONS X TABLE CAPTIONSX IV CHAPTER 1 Introduction 1 1-1Introduction of the Supercapacitors 1 1-1-1 Electrical Double Layer Capacitor (EDLC) 3 1-1-2 Pseudo-capacitor 4 1-1-3 Mechanism of Charging-Discharging 5 1-1-4 Formula 6 1-2 Motivation 7 1-3 Organization of Dissertation 10 CHAPTER 2 Added Materials 11 2-1 Added Materials 11 2-1-1 Added Materials Preparation 11 2-1-1-1 Graphene 11 2-1-1-2 Silver 13 2-1-1-3 Ruthenium 13 2-1-1-4 Trivial material 14 CHAPTER 3 Experiment and Equipment 15 3-1 Experimental Procedures 15 3-1-1 Material Preparation 15 3-1-1-1 TiO2 15 3-1-1-2 RGO-TiO2 15 3-1-1-3 Ag-TiO2 16 3-1-1-4 Ru-TiO2 16 3-1-2 Experimental Process 17 3-2 Measurement System 20 3-2-1 Cyclic Voltammetry Measurement 20 3-2-2 Field Emission Scanning Electron Microscopy (FE-SEM) 20 3-2-3 X-ray Photoelectron Spectroscopy (XPS) 21 3-2-4 X-ray Diffraction(XRD) 21 3-2-5 Microscopes Raman Spectrometer 22 CHAPTER 4 TiO2 Supercapacitors Fabrication 25 4-1 Surface Structure of TiO2 25 4-1-1 SEM Analysis 25 4-1-2 XRD Analysis 27 4-1-3 Raman Analysis 28 4-2 Composition of TiO2 29 4-2-1 XPS Analysis 29 4-3 CV Curves of TiO2 31 CHAPTER 5 RGO-TiO2 Supercapacitors Fabrication 35 5-1 Surface Structure of RGO-TiO2 35 5-1-1 SEM Analysis 35 5-1-2 XRD Analysis 38 5-1-3 Raman Analysis 40 5-2 Composition of RGO-TiO2 43 5-2-1 XPS Analysis 43 5-3 CV Curves of RGO-TiO2 45 CHAPTER 6 Ag-TiO2 Supercapacitors Fabrication 49 6-1 Surface Structure of Ag-TiO2 49 6-1-1 SEM Analysis 49 6-1-2 XRD Analysis 51 6-1-3 Raman Analysis 53 6-2 Composition of Ag-TiO2 55 6-2-1 XPS Analysis 55 6-3 CV Curves of Ag-TiO2 57 CHAPTER 7 Ru-TiO2 Supercapacitors Fabrication 61 7-1 Surface Structure of Ru-TiO2 61 7-1-1 SEM Analysis 61 7-1-2 XRD Analysis 63 7-1-3 Raman Analysis 65 7-2 Composition of Ru-TiO2 67 7-2-1 XPS Analysis 67 7-3 CV Curves of Ru-TiO2 69 7-4 Charge-Discharge Curves of Ru-TiO2 73 CHAPTER 8 Conclusions and Future Prospects 75 8-1 Conclusions 75 8-1-1 Comparison 75 8-1-2 Table 77 8-1-3 Conclusions 78 8-2 Future Prospects 79 REFERENCES 80

    [1]G. Wang, L. Zhang, and J. Zhang, “A Review of Electrode Materials for Electrochemical Supercapacitors,” Chem. Soc. Rev, vol. 41, pp. 797-828, 2012.
    [2]P. Simon, and Y. Gogotsi, “Materials for electrochemical capacitors,” Nature materials, vol. 7, no. 11, pp. 845 – 854, 2008.
    [3]Elcap. (2014. January 23). Wikimedia (2nd ed.) [Online]. Available: http://en.wikipedia.org/wiki/Supercapacitor
    [4]X. Suna, M. Xieb , G. Wanga, H. Suna,A. S. Cavanagh, J. J. Travisb, S. M. Georgeb, and Jie Liana, “Atomic Layer Deposition of TiO2 on Graphene for Supercapacitors," Journal of The Electrochemical Society, vol. 159, no. 4, pp. 364-369, March 1958
    [5]A. K. Mishra, and S. Ramaprabhu, “Functionalized Graphene-Based Nanocomposites for Supercapacitor Application,” The Journal of Physical Chemistry C, vol. 115, no. 29, pp. 14006–14013, 15 April 2011.
    [6]C. Largeot, C. Portet, J. Chmiola, P. Taberna, Y. Gogotsi and P. Simon, “Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor,” J. Am. Chem. Soc., vol. 130, no. 9, pp. 2730-2731, 2008.
    [7]S. G. Kandalkar, D. S. Dhawale, C. K. Kim and, C. D. Lokhande, “Chemical Synthesis of Cobalt Oxide Thin Film Electrode for Supercapacitor Application,” Synth.Met., vol. 160, no. 11-12, pp. 1299-1302, June 2010.
    [8]Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, “Progress of Electrochemical Capacitor Electrode Materials: A review,” International Journal of Hydrogen Energy, vol.34, no.11,2009, pp.4889–4899.
    [9]J. Kim, W. H. Khoh, B. H. Weea, and J. D. Hong, “Fabrication of Flexible Reduced Graphene Oxide–TiO2 Freestanding Films for Supercapacitor Application,” The Royal Society of Chemistry, vol. 5, pp. 9904-9911, Jan. 2015.
    [10]Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Adv. Mater., vol. 22, pp. 3906–3924, 2010.
    [11]Z. F. Li, H. Zhang, Q. Liu, L. Sun, L. Stanciu, and J. Xie, “Fabrication of High-Surface-Area Graphene/Polyaniline Nanocomposites and Their Application in Supercapacitors,” ACS Appl. Mater. Interfaces, vol. 5, no. 7, pp. 2685–2691, March 2013.
    [12]J. Kauppila, and A. Viinikanoja. Graphenes [Online]. Available: https://www.utu.fi/en/units/sci/units/chemistry/research/mcca/Pages/Sub-pages%20of%20Functional%20Materials/Graphenes.aspx
    [13]J. P. Zheng, “Ruthenium Oxide‐Carbon Composite Electrodes for Electrochemical Capacitors,” Electrochemical and Solid-State Letters, vol. 2, no. 8, pp.359-361, May 1999.
    [14]P. T. Kissinge, and W. R. Heineman, “Cyclic Voltammetry,” J. Chem. Educ., vol. 60, no. 9, pp. 702, Sep. 1983.
    [15]K. Thamaphat, P. Limsuwan, and B. Ngotawornchai, “Phase Characterization of TiO2 Powder by XRD and TEM,” Kasetsart Journal, vol.42, no.11, pp. 357-361, 2008.
    [16]H. Cheng, J. Ma, Z. Zhao, and L. Qi, “Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles,” Chemistry of Materials, no. 7, pp. 663–671, 1995.
    [17]M. Ocana, J. V. Garcia-Ramos, and C. J. Serna, “Low-Temperature Nucleation of Rutile Observed by Raman Spectroscopy during Crystallization of TiO2,” Journal of the American Ceramic Society, vol. 75, no. 7, pp. 2010–2012, July 1992.
    [18]J. C. Parker, and R. W. Siegel, “Raman Microprobe Study of Nanophase TiO2 and Oxidation-Induced Spectral Changes,” Journal of Materials Research, vol. 5, no. 6, pp. 1246-1252, 1990.
    [19]B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, and M. S. El-Aasser, “XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation,” Langmuir, vol. 17, no. 9 , pp. 2664-2669, 2001.
    [20]X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, “Hydrogenated TiO2 Nanotube Arrays for Supercapacitors,” Nano letters, vol. 12, no. 3, pp 1690–1696, 2012.
    [21]H. Zheng, T. Zhai, M. Yu, S. Xie, C. Liang, W. Zhao, S. C. I. Wang, Z. Zhang, and X. Lu, “TiO2@C Core–shell Nanowires for High-performance and Flexible Solid-state Supercapacitors,” J. Mater. Chem. C, vol. 1, pp. 225–229, 2013.
    [22]C. C. Xiang, M. Li, M. J. Zhi, A. K. Manivannan, and N. Q. Wu, “Reduced Graphene Oxide/Titanium Dioxide Composites for Supercapacitor Electrodes: Shape and Coupling Effects,” Journal of Materials Chemistry, vol. 22, no. 36, pp.19161-19167, 2012.
    [23]J. Shen, M. Shi, B. Yan, H. Ma, N. Li, and M. Ye, “Ionic Liquid-assisted One-step Hydrothermal Synthesis of TiO2-reduced Graphene Oxide Composites,” Nano Research, vol. 4, no. 8, pp. 795-806, 2011.
    [24]M. S. A. S. Shah, A. R. Park, K. Zhang, J. H. Park, and P. J. Yoo, “Green Synthesis of Biphasic TiO2–reduced Graphene Oxide Nanocomposites with Highly Enhanced Photocatalytic Activity,” ACS applied materials & interfaces, vol. 4, no. 8, pp. 3893-3901, 2012.
    [25]X. Pan, Y. Zhao, S. Liu, C. L. Korzeniewski, S. Wang, and Z. Y. Fan, “Comparing Graphene-TiO2 Nanowire and Graphene-TiO2 Nanoparticle Composite Photocatalysts,” ACS applied materials & interfaces, vol. 4, no. 8, pp. 3944-3950, 2012.
    [26]P. Cui, J. Lee, E. Hwang, and H. Lee, “One-pot Reduction of Graphene Oxide at Subzero Temperatures,” Chemical Communications, vol. 47, no. 45, pp. 12370-12372, 2011.
    [27]I. Moon, J. Lee, R. Ruoff, and H. Lee, “Reduced Graphene Oxide by Chemical Graphitization,” Nature communications, pp. 73, 2010.
    [28]H. T. Liu, L. Zhang, Y. L. Guo , C. Cheng, L. J. Yang, L. Jiang, G. Yu, W. P. Hu, Y. Q. Liu, and D. B. Zhu, “Reduction of Graphene Oxide to Highly Conductive Graphene by Lawesson's Reagent and Its Electrical Applications,” Journal of Materials Chemistry C, vol. 1, no. 18, pp. 3104-3109, 2013.
    [29]J. M. Du, J. L. Zhang , Z. M. Liu , B. X. Han , T. Jiang, and Y. Huang, “Controlled Synthesis of Ag/TiO2 Core-shell Nanowires with Smooth and Bristled Surfaces via A One-step Solution route,” Langmuir, vol. 22, no. 3, pp. 1307-1312, 2006.
    [30]C. Su, L. Liu, M. Zhang, Y. Zhang, and C. Shao, “Fabrication of Ag/TiO2 Nanoheterostructures with Visible Light Photocatalytic Function via A Solvothermal Approach,” CrystEngComm, vol. 14, no. 11, pp. 3989-3999, 2012.
    [31]L. B. Yang, X. Jiang, W. D. Ruan, J. X. Yang, B. Zhao, W. Q. Xu, and J. R. Lombardi, “Charge-Transfer-Induced Surface-Enhanced Raman Scattering on Ag− TiO2 Nanocomposites,” The Journal of Physical Chemistry C, vol. 113, no. 36, pp. 16226-16231, 2009.
    [32]Q. Xiang, J. Yu, B. Cheng, and H. C. Ong, “Microwave-hydrothermal Preparation and Visible-light Photoactivity of Plasmonic Photocatalyst Ag-TiO2 Nanocomposite Hollow Spheres,” Chemistry, an Asian journal, vol. 5, no. 6, pp. 1466, 2010.
    [33]X. F. You, F. Chen, J. L. Zhang, and M. Anpo, “A Novel Deposition Precipitation Method for Preparation of Ag-loaded Titanium Dioxide,” Catalysis Letters, vol. 102, no. 3-4, pp. 247-250, 2005.
    [34]Z. Zhang, F. Xiao, Y. Guo, S. Wang, and Y. Liu, “One-Pot Self-Assembled Three-Dimensional TiO2 Graphene Hydrogel with Improved Adsorption Capacities and Photocatalytic and Electrochemical Activities,” Appl. Mater. Interfaces, vol. 5, no. 6, pp. 2227–2233, 2013.
    [35]H. Madhavaram, H. Idriss, S. Wendt, Y. D. Kim, M. Knapp, H. Over, J. Aßmann, E. L ¨offler, and M. Muhler, “Oxidation Reactions over RuO2: A Comparative Study of the Reactivity of the (110) Single Crystal and Polycrystalline Surfaces,” Journal of Catalysis, vol. 202, no. 2, pp. 296-307, Sep. 2001.
    [36]Y. Kaga, Y. Abe, H. Yanagisawa, M. Kawamura, and K. Sasaki, “Ru and RuO2 Thin Films by XPS,” Surf. Sci. Spectra, vol. 6, no. 1, pp. 67-74, 1999.
    [37]N. L. Wu, S. L. Kuo, and M. H. Lee, “Preparation and Optimization of RuO2-impregnated SnO2 Xerogel Supercapacitor,” Journal of power sources, vol. 104, no. 1, pp. 62-65, Jan. 2002.
    [38]Y. R. Ahn, M. Y. Song, S. M. Jo, C. R. Park, and D. Y. Kim, “Electrochemical Capacitors Based on Electrodeposited Ruthenium Oxide on Nanofibre Substrates,” Nanotechnology, vol. 17, no. 12, pp. 2865, 2006.
    [39]J. Shen, T. Li, W. Huang, Y. Long, N. Li, and M. Ye, “One-pot Polyelectrolyte Assisted Hydrothermal Synthesis of RuO2-reduced Graphene Oxide Nanocomposite,” International Society of Electrochemistry, vol. 95, pp. 155-161, 15 April 2013.
    [40]M. F. El-Kady, V. Strong, S. Dubin, and R.B. Kaner, “Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors,” Science, vol. 335, no. 6074, pp. 1326-1330, March 2012.
    [41]Y. Li, K. Sheng, W. Yuan, and G. Shi, “A High-performance Flexible Fiber-shaped Electrochemical Capacitor Based on Electrochemically Reduced Graphene Oxide,” Chemical Communications, vol. 49, pp. 291-293, March 2013.
    [42]M. N. Hyder, B. M. Gallant, N. J. Shah, S. H. Yang, and P. T. Hammond, “Synthesis of Highly Stable Sub 8 nm TiO2 Nanoparticles and Their Multilayer Electrodes of TiO2/MWNT for Electrochemical Applications,” Nano letter, vol. 13, no. 10, pp. 4610-4619, 2013.
    [43]C. C. Xiang, M. Li, M. J. Zhi, A. Manivannan, and N. Q. Wu, “Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and coupling effects,” J. Mater. Chem, vol. 22, pp. 19161-19167, Feb. 2012.
    [44]Z. A. Hu, Y. X. Wang, Y. L. Xie, Y. Y. Yang, Z. Y. Zhang, and H. Y. Wu, “Ag Nanowires and Its Application as Electrode Materials in Electrochemical Capacitor,” Journal of Applied Electrochemistry, vol. 40, no. 2, pp. 341-344, Feb. 2010.
    [45]J. Zhi, W. Zhao, X. Liu, A. Chen, Z. Liu, and F. Huang, “Highly Conductive Ordered Mesoporous Carbon Based Electrodes Decorated by 3D Graphene and 1D Silver Nanowire for Flexible Supercapacitor,” Advanced Functional Materials, vol. 24, no. 14, pp. 2013-2019, April 2014.
    [46]J. P. Zheng, P. J. Cygan, and T. R. Jow, “Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors,” Journal of the Electrochemical Society, vol. 142, no. 8, pp. 2699-2703, August 1995.
    [47]Y. Z. Zheng, H. Y. Ding, and M. L. Zhang, “Hydrous–ruthenium–oxide Thin Film Electrodes Prepared by Cathodic Electrodeposition for Supercapacitors,” Thin Solid Films, vol. 516, no. 21, pp. 7381-7385, Sep. 2008.
    [48]G. Y. Yu, W. X. Chen, Y. F. Zheng, J. Zhao, X. Li, and Z.D. Xu, “Synthesis of Ru/carbon Nanocomposites by Polyol Process for Electrochemical Supercapacitor electrodes,” Materials Letters, vol. 20, no. 20, pp. 2453-2456, Sep. 2006.
    [49]C. C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, “Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors,” Nano Letters, vol. 6, no. 12, pp. 2690-2695, Nov. 2006.
    [50]C. Lin, J. A. Ritter, and B. N. Popov, “Development of Carbon‐Metal Oxide Supercapacitors from Sol‐Gel Derived Carbon‐Ruthenium Xerogels,” Journal of The Electrochemical Society, vol. 146, no. 9, pp. 3155-3160, May 1999.
    [51]Z. S. Wu, D. W. Wang, W. C. Ren, J. P. Zhao, G. M. Zhou, F. Li, and H. M. Cheng, “Anchoring Hydrous RuO2 on Graphene Sheets for High-Performance Electrochemical Capacitors,” Advanced Functional Materials, vol. 20, no. 20, pp. 3595-3602, Oct. 2010.
    [52]M. Min, K. Machida, J. H. Jang, and K. Naoi, “Hydrous RuO2/Carbon Black Nanocomposites with 3D Porous Structure by Novel Incipient Wetness Method for Supercapacitors,” Journal of The Electrochemical Society, vol. 153, no. 2, pp. 334-338, 2006.
    [53]J. K. Lee, H. M. Pathan, K. D. Jung, and O. S. Joo, “Electrochemical Capacitance of Nanocomposite Films Formed by Loading Carbon Nanotubes with Ruthenium Oxide,” Journal of Power Sources, vol. 159, no. 2, pp. 1527-1531, Sep. 2006.
    [54]Yong-gang, Wang, and Zhang Xiao-gang, “Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites,” Electrochimica Acta, vol. 49, no. 12, pp. 1957-1962, May. 2004.
    [55]C. C. Hu, H. Y. Guo, K. H. Chang, and C. C. Huang, “Anodic composite deposition of RuO2▪xH2O–TiO2 for electrochemical supercapacitors,” Electrochemistry Communications, vol. 11, no. 8, pp. 1631-1634, Aug. 2009.

    下載圖示 校內:2020-06-26公開
    校外:2020-06-26公開
    QR CODE