簡易檢索 / 詳目顯示

研究生: 法德克
Heckmann, Frédéric
論文名稱: 機翼上積冰成長之能量平衡模型發展
Development of Energy Balance Model for Finite Volume Rime Ice Accretion on Airfoils
指導教授: 蕭飛賓
Hsiao, Fei-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 109
中文關鍵詞: 積冰霜冰有限體積法OpenFoamMessinger Model
外文關鍵詞: Icing, Rime Ice, OpenFoam, Finite Volume, Messinger Model
相關次數: 點閱:63下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於飛行安全之重要性,機翼積冰是適航審定中一複雜過程,需要高效率且精密度及精確度高的工具。目前電腦計算能力提供之可能性日益漸增,本文將探討機翼上三維積冰之熱力學平衡模型發展。
    本文使用之CFD軟體為OpenFoam C++ toolbox,並成功建立一新求解器-icingFoam,此求解器源自於rhoPimpleFoam。利用典型的RANS PIMPLE algorithm求解空氣流場,此演算法可應用於可壓縮流之各種現代化紊流模型計算。本文使用Eulerian建立一可觀察液滴流動之求解器,並在二維及三維情況下,進行測試和驗證。模擬結果顯示與實驗結果具有良好的一致性。此外,OpenFOAM之網格變形應用,可用於探討模擬積冰過程。
    由於網格品質因素,模擬結果雖無法與文獻中七分鐘後之積冰結果做比較。但積冰過程所獲得之訊息,是值得令人探討的。在未來,或許可使用更先進的網格變形工具來克服問題。最後觀察獲得以下結果,以熱力學平衡模型為基礎進行測試及應用於Messinger model;本研究對於傳統的smooth wall functions無法適用於準確預測對流之熱通量,故必須採用rough wall function;由於需模擬固體昇華之影響,建立之新模型,將不使用heat transfer coefficient;對於熱通量而言,停滯點之外的區域,由於無缺乏物理意義,結果非令人滿意,但在停滯點上與預期相符。
    結論,本研究建立完整的open source finite volume求解器及積冰模型。此研究項目,在未來上仍有許多地方需改進和探討,本文已完成此模擬之基礎之建立,可供日後發展模擬積冰之依據。

    Fundamental to the safety of an aircraft, the icing certification is a complex process that requires efficient and accurate tools. The growing computer power offers increasingly possibilities and so the current work aims to set up the bases of a thermodynamic equilibrium finite volume rime ice accretion model.
    The OpenFoam C++ toolbox has been successfully used to create a new solver, icingFoam, that is derived from the existing air solver rhoPimpleFoam. The air flow is calculated through a typical RANS PIMPLE algorithm that is able to handle compressible flow with various modern turbulence models. A custom Eulerian droplet motion solver has then been implemented and validated on both 2D and 3D cases with good agreement with experiments. Next, the mesh morphing abilities of OpenFoam have been used to simulate the ice growth. Although it has not been possible to reach the seven minutes of icing required by the validation case due to the mesh quality degradation, the results are encouraging. Indeed, this problem might be overcome in the future by the use of more advanced morphing tools. Finally, a rime ice thermodynamic equilibrium model based on Messinger model has been implemented and tested. The use of a rough wall function soon appeared to be a necessity as the traditional smooth wall functions are unable to predict accurately the convective heat flux. In order to simulate the sublimation effect, an alternative model that doesn’t use the heat transfer coefficient is proposed in this work.
    Concluding, this work led to the establishment of a fully functional open source finite volume solver able to simulate the rime ice accretion process. Even though many improvements are still to be done, all the fundamental bricks are set up and ready to use.

    摘要 I ABSTRACT II ACKNOWLEDGEMENTS III CONTENTS IV LIST OF TABLES VII LIST OF FIGURES VIII NOMENCLATURE XII Chapter 1. Introduction 1 1.1 Background 1 1.1.1 General Introduction 1 1.1.2 Introduction to the Icing Conditions 5 1.2 Description of the Different Kinds of Ice 6 1.3 Description of OpenFoam 7 1.4 Previous and Related Studies 8 1.4.1 Reference Publications 8 1.4.2 Available Methods to Predict Ice Shapes 10 1.4.3 Availability of the Experimental Data 14 1.5 Motivation and Present Contributions 16 Chapter 2. Air Flow Field 17 2.1 Requirements of the Simulation 17 2.2 Governing Equations 18 2.3 Turbulence Model and Roughness Requirements 19 Chapter 3. Droplet flow field 22 3.1 Properties of the Water Droplets 22 3.2 Lagrangian Model 25 3.3 Eulerian Model 26 3.3.1 General Principle 26 3.3.2 Droplet Interaction 27 3.3.3 Governing Equations 28 3.3.4 Definition of the Collection Efficiency 30 3.3.5 Limitations 31 Chapter 4. Rime Ice Theoretical Model 34 4.1 Rime Ice Assumptions 34 4.2 Mass Balance 34 4.2.1 Incoming Mass 35 4.2.2 Outgoing Mass 35 4.2.3 Height of Ice Generated 36 4.3 Energy Balance 36 4.3.1 Advanced Thermodynamic Model 36 4.3.2 Governing Equations 38 4.3.3 Simplified Thermodynamic Model 47 4.4 Example of Energy Balance Computed by LEWICE 48 4.5 Mesh Motion 50 4.5.1 Description of the Meshes used by OpenFoam 50 4.5.2 Mesh Quality Criteria 51 4.5.3 Mesh Motion Technics 56 Chapter 5. Creation of the Solver and the Convergence Strategy 58 5.1 Air Flow Calculation 59 5.2 Droplet Motion Calculation 61 5.3 Ice Thermodynamic Equilibrium Calculation 66 5.4 Mesh Motion Calculation 67 5.5 Selection of the Temporal Representation 69 5.6 Summary of the Strategy Adopted 71 Chapter 6. Simulation results and analysis 73 6.1 Validation of the Droplet Motion 73 6.1.1 2D Case: Cylinder 73 6.1.2 2D Case: Naca0012 Airfoil 76 6.1.3 3D case: Sphere 79 6.2 Validation of the Pure Accretion 82 6.2.1 2D case: Cylinder 82 6.2.2 2D case: Naca0012 Airfoil 85 6.3 Validation of the Thermodynamic Model 87 6.3.1 2D case: Naca0012 Airfoil without Sublimation 88 6.3.2 2D case: Naca0012 Airfoil with Sublimation 92 Chapter 7. Conclusion and Recommendation for Future Work 94 7.1 Conclusion 94 7.2 Future Work 95 APPENDIX 97 REFERENCES 106

    [1] H. E. Addy, Jr., “Ice Accretions and Icing Effects for Modern Airfoils”, Glenn Research Center, USA, 2000
    [2] William M. Leary, “We Freeze to Please”, Glenn Research Center, USA, 2002
    [3] M. Papadakis, R. Eulangonan, G.A. Freund, Jr., M. Breer, G.W. Zumwalt, L. Whitmer, “An Experimental Method for Measuring Water Droplet Impingement Efficiency on Two- and Three-Dimensional Bodies”, NASA contractor report, USA, 1989
    [4] A. Prosperetti, “Ensemble averaging techniques for disperse flows” in “Particulate Flows: Processing and Rheology”, Springer, pp.99-132, USA,1998
    [5] X. L. Tong and E. A. Luke, “Robust and Accurate Eulerian Multiphase Simulations of Icing Collection Efficiency Using Singularity Diffusion Model”, AIAA Meeting and Exhibit, USA, 2005
    [6] J. Zerbini, “Ice Accretion and Wing Anti-Icing System Simulation”, First workshop on aviation Safety, Rio de Janeiro, Brazil, 2010
    [7] M. Sommerfeld, “Modellierung und numerische Berechnung von partikelbeladenen turbulenten Strömungen mit Hilfe des Euler/Lagrange-Verfahrens”, Shaker Verlag, Aachen, Germany, 1996
    [8] S. Lee; “Development of 3D Ice Accretion Measurement Method”, AIAA Atmospheric and Space Environments Conference, USA, 2012
    [9] J. Foss Van Zante, R. F. Ide, L. E. Steen, “NASA Glenn Icing Research Tunnel Upgrade and Cloud Calibration”, AIAA 4th Atmospheric Sciences conference paper, USA, 2012
    [10] V. Reshotko; “Physical mechanisms of glaze ice scallop formations on swept wings”, NASA technical memorandum, USA, 1998
    [11] R. Clift, J.R. Grace, M.E. Weber, “Bubbles, Drops, and Particles”, Academic Press, New York, USA, 1978.
    [12] N. S. Cheng, “Comparison of formulas for drag coefficient and settling velocity of spherical particles”, Singapore, 2009
    [13] E. Villermaux, B. Bossa, “Single-drop fragmentation determines size distribution of raindrops”, Nature Physics Vol. 5, 2009
    [14] I. Langmuir, K. B. Blodgett, “A Mathematical Investigation of Water Droplet Trajectories”, U.S. Army Air Force, Technical report, USA, 1946
    [15] J. Riley, R. Jeck, “Volume Spectra in Supercooled Clouds for Several Research Flights”, AIAA 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, 1992
    [16] J. Grunow, “The Productiveness of Fog Precipitation in Relation to the Cloud Droplet Spectrum”, Physics of Precipitation, pp. 110-117, USA, 1960
    [17] B. E. Poling, J. M. Pausnitz, J. P. O’Connell, “The Properties of Gases And Liquids”, Book, Chap. 11.3, Fifth Edition, 2001
    [18] T. G. Myers, “An extension to the Messinger model for aircraft icing”, AIAA J. 39, 2001
    [19] F.M. Bos, “Numerical simulations of flapping foil and wing aerodynamics”, Netherlands, 2009
    [20] D. Boger, R. Noack, E. Paterson, “FoamedOver, A Library to Add a Dynamic Overset Grid Capability to OpenFOAM”, Penn State University, USA, 2010
    [21] H. Jasak, “Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows”, PhD. Thesis, Imperial College, University of London, England, 1996
    [22] G. Lima da Silva, M. Arima, N. Branco, M. Pimenta, “Proposed Wall Function Models for Heat Transfer around a Cylinder with Rough Surface in Cross Flow”, Aero-Thermal Solutions for Industry, Brazil, 2011
    [23] L. M. Stefanini, O. M. Silvares, A. L. Silva, E. J. G. J. Zerbini, “Heat transfer on iced cylinders”, AIAA Atmospheric and Space Environments Conference, Toronto, Canada, 2010
    [24] E. Achenbach, “The effect of surface roughness on the heat transfer from a circular cylinder to the cross flow of air”. International Journal of Heat and Mass Transfer, pp. 359–369., 1977
    [25] G. Fortin, J.L. Laforte, A. Beisswenger, “Prediction of ice shapes on NACA0012 2D airfoil”, SAE International, USA, 2003
    [26] R. Moffat and W. Kays, “A review of turbulent-boundary-layer heat transfer research at Stanford, 1958-1983”. Vol. 16 of Advances in Heat Transfer, pp. 241 – 365., 1984
    [27] C. Bidwell, SJ. Mohler, ”Collection efficiency and ice accretion calculations for a sphere, a swept ms(1)-317 wing, a swept naca-0012 wing tip, an axisymmetric inlet and boeing 737-300 inlet”, NASA Report, 1995
    [28] J. Riley, “Report of the 12A Working Group on Determination of Critical Ice Shapes for the Certification of Aircraft”, Virginia, USA, 2000
    [29] P. Xuan, E. Montreuil, A. Chazottes , X. Vancassel, P. Presonne, “Experimental and numerical study of Scallop Ice on swept cylinder”, ONERA, France, 2009
    [30] G.A. Ruff, B.M. Berkowitz, “User manual for the NASA Lewice ice accretion prediction code (LEWICE)”, NASA, USA, 1990
    [31] X. Prestau, “Modélisation microphysique tridimensionnelle des dépôts de givres : application au givre en queue de homard sur des cylindres en flèche”, ONERA, France 2009
    [32] F. Heckmann, T. Michon, “Développement d’un modèle numérique de givrage intégré à Fluent”, Thesis, Ecole d’Ingénierie des Sciences Aérospatiales, France, 2011
    [33] T. Michon, D. Chartrain, "Ice Shape", DAHER-SOCATA and ANSYS INC., France 2013
    [34] NASA Website, www.nasa.gov
    [35] Bureau Enquête Accident Website, www.bea.aero
    [36] Agency Hail Suppression Website, www.weathermod-bg.eu
    [37] OpenFoam Website, www.openfoam.com
    [38] Federal Aviation Administration, www.faa.gov
    [39] O. Desjardins, “Multiphase Flows”, MCEN 6228 Class Notes, Department of Mechanical Engineering, University of Colorado, USA

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE