| 研究生: |
邵得晉 Shau, De-Jin |
|---|---|
| 論文名稱: |
電腦視覺技術於細胞影像序列運動分析之研究 A Study on Computer Vision Technique for Motion Analysis from Cellular Image Sequence |
| 指導教授: |
孫永年
Sun, Yung-Nien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 影像分割 、追蹤 、應變 |
| 外文關鍵詞: | image segmentation, strain, tracking |
| 相關次數: | 點閱:80 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醫學專家與病理專家藉由細胞實驗來觀察外界因素對人體的影響。一種稱為Phase Contrast的成像技術,改進一般Bright Contrast成像導致細胞幾乎看不見的缺點,已被廣泛地使用在長時間觀察活細胞的研究上。
在本論文中,我們藉由影像處理技術抓取涵蓋細胞的初始輪廓,然後以Fast Geodesic Active Contour(FGAC)來分割並取得細胞輪廓資訊。經實驗證實即使初始輪廓包含兩個以上的獨立細胞,FGAC仍能正確的分割出完整的細胞個體。在細胞序列影像的分割上,我們採取Snake與FGAC交替使用的方式來節省時間,同時維持不錯的效果。在細胞追蹤上,我們證明即使細胞在活動過程中有細胞分裂的情形產生,我們的方法仍能完全確立細胞在一影像序列中的前後對應關係。此外,我們分析細胞輪廓隨時間不同而形變的應變, 藉由觀察應變量曲線與細胞生命週期相呼應,以斷定細胞的行為、狀態。在視覺化的效果上,我們將細胞輪廓資訊與時間相結合成三維資訊,並將細胞的運動變化情形呈現在三維空間中,使得觀察細胞形變、運動過程更方便,這些都是我們以電腦視覺技術應用於細胞顯微影像的具體成果。
Medical experts and pathologists experiment on cells to observe the effects upon cells caused by variations of outside factors. A new imaging technology called “Phase Contrast”, which improves the drawbacks of invisible cells under the conventional microscopy, has been employed in the researches of observing living cells for a long time.
In this thesis, we use image-processing technique to get the initial contour containing cells. Then we do the segmentation with the Fast Geodesic Active Contour (FGAC) method to extract the contours of cells. Even when the initial contour covers more than two cells, the FGAC still can correctly segment all the cells. In the segmentation of cellular image sequence, we use Snake and FGAC alternatively to save computation time and retain the good results. In tracking cells, we demonstrate that our method can trace and maintain correct correspondences between cells in a sequence of cell motion image, even cytokinesis occurred in the activities of cells. Besides, we use analyze “strain” of cell contours deforming with time, and ascertain the behaviors and states of cells by studying the curve of magnitude of strain corresponding to a life cycle of cell. In motion visualization, we combine the information of cell contours with time to get the (2D+T) data set, and display the variation of cell motion in the three-dimensional space. It is convenient to observe the complete process of the deformation and motion of a certain cell, or to observe the global motions of all cells in an image sequence. These are some practical achievements in this thesis for applying computer vision technique to cellular microscopic image analyses.
[1] F. Leymarie and M. D. Levine, “Tracking Deformable Objects in the Plane Using an Active Contour Model,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 15, No. 6, pp.617-634, June 1993.
[2] Zimmer, C.; Labruyere, E.; Meas-Yedid, V.; Guillen, N.; Olivo-Marin, J.-C,” Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours: a tool for cell-based drug testing,” IEEE Transactions on Medical Imaging, , Volume: 21 Issue: 10 , pp.: 1212 –1221,Oct. 2002
[3] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour Models,” International Journal of Computer Vision, Vol. 1, pp.321-331, 1988.
[4] V. M. Yedidand, J. Christopher, and O. Marin, “Active Contours for the Movement and Motility Analysis of Biological Objects,” in Proceedings IEEE International Conference on Image Processing, Vol. 1, pp.196-199, 2000.
[5] C. Xu and J. L. Prince, “Snake, Shape, and Gradient Vector Flow,” IEEE Trans. on Imaging Processing, Vol. 7, No. 3, pp.359-369, March 1998.
[6] K. Wu, D. Gauthier, and M. D. Levine, “Live Cell Image Segmentation,” IEEE Trans. on Biomedical Engineering, Vol. 42, No. 1, pp.1-12, January 1995.
[7] L. Liu and S. Sclaroff, “Medical Image Segmentation and Retrieval via Deformable Models,” in Proceedings IEEE International Conference on Image Processing, Vol. 2, pp.1071-1074, 2001.
[8] Nilanjan Ray, Scott T. Acton, Klaus Ley. “Tracking Leukocytes In Vivo With Shape And Size Constrained Active Contours,” IEEE Trans. on Medical Imaging Vol. 21, No. 10, pp.1222-1235, October 2002
[9] F. Germain, A. Doisy, X. Ronot ,and P. Tracqui “Characterization of Cell Deformation and Migration Using a Parametric Estimation of Image Motion”, IEEE Trans. on Biomedical Engineering, Vol. 46, No. 5, pp.584-600, March 1999.
[10] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell., Vol. 17, pp.185-203, 1981.
[11] J. M. Odobez and P. Bouthemy, “Robust Multiresolution Estimation of Parametric Motion Models,” Journal of Visual Communication and Image Representation, Vol. 6, No. 4, pp.348-365, December 1995.
[12] Jim H. Velduis, G. Wayne Brodland, “A Deformable Block-Matching Algorithm for Tracking Epithelial Cells,” Image and Vision Computing, 1999.
[13] F. Siegert, C. J. Weijer, A. Nomura, and H. Mike, “A Gradient Method for the quantitative Analysis of Cell movement and Tissue Flow and its Application to the Analysis of Multicelluar Dictyostelium Development,” Journal of Cell Science, Vol. 107, pp.97-104, 1999.
[14] J. A. Withers and K. A. Robbins, “Tracking Cell Splits and Merges”
Proceedings IEEE Southwest Symposium on Image Analysis and Interpretation pp. 117-122 (1996)
[15] R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky, “Fast Geodesic Active Contours,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 10, No. 10, pp.1467-1475, October 2001.
[16] J. A. Sethian, Level Set Methods, Cambridge University Press 1996.
[17] N. OTSU, “A Threshold Selection Method from Gray-level Histogram,” IEEE Trans. on System, Man, and Cybernetics, Vol. 9, No. 1, pp.62-66, January 1979.
[18] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision Second Edition, PWS Publishing 1998.
[19] D. J. Williams ,and M. Shan, “A Fast Algorithm for Contours and Curvature Estimation,” CVGIP: Image Understanding, Vol. 55, No. 1, pp.14-26, 1992.
[20] Steven Lobregt and Max A. Viergever, “A Discrete Dynamic Contour Model,” IEEE Trans. on Medical Imaging, Vol. 14, No. 1, pp.12-24, March 1995.
[21] Y. Fu, A. T. Erdem, and A. M. Tekalp, “Tracking Visible Boundary of Objects Using Occlusion Adaptive Motion Snake,” IEEE Trans. on Imaging Processing, Vol. 9, No. 12, pp.2051-2060, December 2000.
[22] L. D. Cohen, “On active contour models and balloons,” CVGIP: Image Understanding, Vol. 53, No. 2, pp.211-218, March 1991.
[23] J.A. Sethian, Level Set Method and Fast Marching Methods, Cambridge University Press 1999.
[24] R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape Modeling with Front Propagation: A Level Set Approach,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 17, No. 2, pp.158-175, February 1995.
[25] V. Caselles, R. Kimmel, G. Sapiro, “Geodesic Active Contours,” International Journal of Computer Vision, Vol. 22, No. 1, pp.61-79, 1997.
[26] J. Weickert, B. M. ter Haar Romeny, “Efficient and Reliable Schemes for Nonlinear Diffusion Filtering,” IEEE Trans. on Imaging Processing, Vol. 7, No. 3, pp.398-410, March 1998.
[27] D.W. Scott, Multivariate Density Estimation. Wiley, 1992.
[28] Saeed Moaveni, Finite Element Analysis: Theory and Application with ANSYS,1999
[29] Papademetris, X., Sinuas, A., Dione, D., and Duncan, J. “Estimation of 3-D Left Ventricular Deformation From Medical Images Using Biomechanical Models,” IEEE Trans. on Medical Imaging, Vol. 21, No. 7, pp.786-800, July 2002.
[30] Kendall Atkinson, Elementary Numerical Analysis Second Edith