| 研究生: |
王品嫺 Wang, Pin-Xian |
|---|---|
| 論文名稱: |
微奈米銅粉合成及分散之研究 A study on the preparation and dispersion of micro/nano copper particles |
| 指導教授: |
雷大同
Lei, Da-Tong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 微奈米銅粉 、分散 、明膠 、阿拉伯膠 |
| 外文關鍵詞: | micro/nano copper particles, dispersed, gelatin, gum arabic |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微奈米銅粉擁有許多特性如表面活性高、良好的導電及導熱性能、低熔點、非常低的電阻值等,與貴金屬導體相比價格低廉,因此在許多方面極具發展潛力與應用價值,而這些特性都是由於微奈米銅粉的尺寸非常小,使其具有極大的表面積而導致。
本研究以硫酸銅為前驅鹽、次亞磷酸鈉為還原劑,利用化學還原法合成分散性佳、粒徑均一之微奈米銅粉。以Bloom number 300明膠(G1)、Bloom number 75-100明膠(G2)及阿拉伯膠為分散劑,所得銅粉以XRD、BET、SEM及TEM進行分析。分散劑分子量越高所得之銅粉一次粒子及二次粒子越大,其添加量也越多;以連續定量方式加入反應槽進行還原,由於溶液中Cu2+濃度變化較小,可改進銅粉粒徑之均一性。使用明膠(G2)時銅粉有最小一次粒子(20 nm)與二次粒子(100 nm);添加阿拉伯膠可得均一性及分散性最佳之銅粉,其一次粒子及二次粒子粒徑分別為40 nm與250 nm。
Micro/nano copper particles show a wide variety of unique properties, such as high surface activity, high electrical and thermal conductivity, relatively low melting temperature. Its price is much cheaper than precious metals. Thus they have significant potential for many applications. Such unique properties arise from their small sizes which correspond to their high surface area.
Well dispersed and narrow-sized micro/nano copper particles were prepared using chemical reduction method with CuSO4 as the precursor, NaH2PO2 as the reducing agent, and bloom number 300 gelatin(G1), bloom number 75-100 gelatin(G2) and gum arabic as the dispersants. Characterization of copper particles was performed by XRD, BET, SEM and TEM. For high molecular weight dispersants, the sizes of the primary particles and secondary particles and the dosage of dispersant also increase. When CuSO4 solution was added dropwisely, the size distribution of copper particles was narrowed, which probably is due to small Cu2+ concentration change. The sample of smallest primary particle(20 nm) and secondary particle(100 nm) was obtained when gelatin(G2) was used as dispersant. The best result of well dispersed and narrow-sized copper particles were obtained by using gum arabic as dispersant, the size of primary particle and secondary particle was 40 nm and 250 nm respectively.
1. 盧永坤,2005,奈米科技概論,滄海書局,台中。
2. 蘇品康,1989,超微粒子材料技術,復漢出版社,台南。
3. T. Yonezawa, N. Nishida, A. Hyono, 2010, “One-pot Preparation of Antioxidized Copper Fine Particles with a Unique Structure by Chemical Reduction at Room Temperature,” Chem. Lett., 39, 548-549.
4. 莊萬發,1995,超微粒子理論與應用,復漢出版社,台南。
5. S. J. Hwang, J. H. Lee, 2005, “Mechanochemical synthesis of Cu–Al2O3 nanocomposites,” Materials Science and Engineering, A 405, 140–146.
6. Y. H. Yeh, M. S. Yeh, Y. P. Lee, and C. S. Yeh, 1998, “Formation of Cu nanoparticles from CuO powder by laser ablation in 2-propanol,” The Chemical Society of Japan, 1183-1184.
7. F. Mafune´, J. Y. Kohno, Y. Takeda, and T. Kondow, 2000, “Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution,” J. Phys. Chem, 103, 9111-9117.
8. M. S. Yeh, Y. S. Yang, Y. P. Lee, H. F. Lee, Y. H. Yeh, and C. S. Yeh, 1999, “Formation and characteristics of Cu colloids from CuO powder by laser irradiation in 2-propanol,” J. Phys. Chem, 103, 6851-6857.
9. N. Satoh and K. Kimura, 1998, “Metal Colloids Produced by Means of Gas Evaporation Technique. V. Colloidal Dispersion of Au Fine Particles to Hexane, Poor Dispersion Medium for Metal Sol,” Bull. Chem. Soc. Jpn., 62, 1758-1763.
10. Y. Lee, J. R. Choi, K. J. Lee, N. E. Stott, D. Kim, 2008, ”Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology, 19, 7pp.
11. G. C. Papavassiliout, T. Kokkinakist, 1974, “Optical absorption spectra of surface plasmons in small copper particles”, J. Phys. F: Met. Phys., Vol.4, L67-L68.
12. T. Yonezawa, N. Nishida, A. Hyono, 2010, “One-pot Preparation of Antioxidized Copper Fine Particles with a Unique Structure by Chemical Reduction at Room Temperature,” Chem. Lett., 39, 548-549.
13. S. P. Wu, S. Y. Meng, 2006, “Preparation of micron size copper powder with chemical reduction method,” Materials Letters, 60, 2438–2442.
14. I. I. Obraztsova, G. Yu. Simenyuk, and N. K. Eremenko, 2004, “Electrically Conducting Formulations Based on Ultradispersed Powders of Copper, Obtained by Reduction of Its Salts with the Hypophosphite Ion,” Russian Journal of Applied Chemistry, Vol. 77 No. 3, 380 -384.
15. X. F. Tang, Z. G. Yang, W. Ji. Wang, 2010, “A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology,” Colloids and Surfaces A: Physicochem. Eng., Aspects 360, 99–104.
16. 林育右,2003,以化學還原法合成導電性銅奈米微粉之研究,國立成功大學碩士論文。
17. S. A. Kumara, K. S. Meenakshia, B. R. V. Narashimhan, S. Srikanth, G. Arthanareeswaranc, 2009, “Synthesis and characterization of copper nanofluid by a novel one step method,” Materials Chemistry and Physics, 113, 57–62.
18. S. P. Wu and X. H. Ding , 2007, “Preparation of fine copper powder with chemical reduction method and its application in MLCC,” IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 30, NO. 3, 434-438.
19. C. W. Wu, B. P. Mosher and T. F. Zeng, 2006, “One-step green route to narrowly dispersed copper nanocrystals,” Journal of Nanoparticle Research, 8, 965–969.
20. W. Yu, H. Q. Xie, L. F. Chen, Y. Li, and C. Zhang, 2010, “Controlled synthesis of narrow-dispersed copper nanoparticles,” Journal of Dispersion Science and Technology, 31, 364–367.
21. C. Y. Huang, S. R. Sheen, 1997, “Synthesis of nanocrystalline and monodispersed copper particles of uniform spherical shape,” Materials Letters, 30, 357-361.
22. H. T. Zhu, Y. S. Lin, Y. S. Yin, 2004, “A novel one-step chemical method for preparation of copper nanofluids,” Journal of Colloid and Interface Science , 277, 100–103.
23. S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. Chris Wang, 1999, “The Shape Transition of Gold Nanorods,” Langmuir, 15, 701-709.
24. M. T. Reetz’ and W. Helbig, 1994, “Size-Selective Synthesis of Nanostructured Transition Metal Clusters,” J. Am. Chem. SOC., 116, 1401-1402.
25. J. A. Becker, R. Scha¨ fer, R. Festag, W. Ruland, and J. H. Wendorff, 1995, “Electrochemical growth of superparamagnetic cobalt clusters,” J. Chem. Phys., 103, 2520-2527.
26. Y. Nagata, Y. Watananabe, S. I. Fujita, T. Dohrnarua and S. Taniguchi, 1992, “Formation of Colloidal Silver in Water by Ultrasonic Irradiation,” J. CHEM. SOC., 1620-1622.
27. K. Esumi, K. Matsuhisa, and K. Torigoe, 1995, “Preparation of Rodlike Gold Particles by UV Irradiation Using Cationic Micelles as a Template,” Langmuir, 11, 3285-3287.
28. G. A. Ozin, D. F. McIntosh, and S. A. Mitchell, 1981, “Methane Activation. Photochemical Reaction of Copper Atoms in Solid Methane,” J. Am. Chem. SOC., 103, 1575-1577.
29. C. R. Jones, F. A. Houle, C. A. Kovac. and T. H. Baum, 1985, “Plhotochemical generatijon and deposition of copper from a gas phase precursor,” Appl. Phys. Lett., 46 (1), 97-99.
30. H. D. Gafney and R. L. Lintvedt , 1971, “Photochemical Reactions of Copper(11)-1,3-Diketonate Complexes,” Journal of the American Chemical Society, 1623-1628.
31. S. S. Jushi, S.F. Pat, V. Iyer and S. Mahumuni, 1998, “Radiation induced synthesis and characterization of copper nanoparticles,” NanoStructrued Materials, 10, 1135-1144.
32. M. Treguer, C. de Cointet, H. Remita, J. Khatouri, M. Mostafavi, J. Amblard, and J. Belloni, 1998, “Dose rate effects on radiolytic synthesis of gold-silver bimetallic clusters in solution,” J. Phys. Chem., 102, 4310-4321.
33. D. W. Lee, G. H. Ha and B. K. Kim, 2001, “SYNTHESIS OF Cu-Al2O3 NANO COMPOSITE POWDER,” Scripta mater., 44, 2137–2140.
34. A. G. Nasibulin, E. I. Kauppinen, D. P. Brown, and J. K. Jokiniemi, 2001, “Nanoparticle Formation via Copper (II) Acetylacetonate Vapor Decomposition in the Presence of Hydrogen and Water,” J. Phys. Chem., 105, 11067-11075.
35. A. Roucoux, J. Schulz, and H. Patin, 2002, “Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts?,” Chem. Rev., 102, 3757-3778.
36. P. Chen, X. Wu, J. Lin, and K. L. Tan , 1999, “Synthesis of Cu Nanoparticles and Microsized Fibers by Using Carbon Nanotubes as a Template,” J. Phys. Chem. B, Vol. 103, 4559-4561.
37. R. S. Mamoory, G. P. Demopoulos, and R. A. L. Drew, 1996, “Preparation of fine copper powders from organic media by reaction with hydrogen under pressure .2. The kinetics of particle nucleation, growth, and dispersion,” Metallurgical and Materials Transactions B, 27B, 585-594.
38. I. Lisiecki and M. P. Pileni', 1993, “Synthesis of Copper Metallic Clusters Using Reverse Micelles as Microreactors,” J. Am. Chem. SOC., 115, 3887-3896.
39. M. P. Pileni, T. G. Krzywicki, J. Tanori, A. Filankembo and J. C. Dedieu, 1998, “Template design of microreactors with colloidal assemblies: Control the growth of copper metal rods,” Langmuir, 14, 7359-7363.
40. Y. W. Ao, Y. X. Yang, S. L. Yuan, L. H. Ding, G. R. Chen, 2007, “Preparation of spherical silver particles for solar cell electronic paste with gelatin protection,” Materials Chemistry and Physics, 104,158–161.
41. C. Y. Huang, S. R. Sheen, 1997, “Synthesis of nanocrystalline and monodispersed copper particles of uniform spherical shape,” Materials Letters, 30, 357-361.
42. I. Sondi, D. V. Goia, and E. Matijevi´c, 2003, “Preparation of highly concentrated stable dispersions of uniform silver nanoparticles,” Journal of Colloid and Interface Science, 260, 75–81.
43. S. Kapoor, D. K. Palit, T. Mukherjee, 2002, “Preparation, characterization and surface modification of Cu metal nanoparticles,” Chemical Physics Letters, 355, 383–387.
44. N. A. Dhas, C. P. Raj, and A. Gedanken, 1998, “Synthesis, characterization, and properties of metallic copper nanoparticles,” Chem. Mater., 10, 1446-1452.
45. D. V. Goia and E. Matijevic, (1998), “Preparation of monodispersed metal particles,” New J. Chem., 22, 1203-1215.
46. M. N. Rahaman, 2007, ”Ceramic Processing,” Taylor & Francis, USA.
47. T. Sugimoto, F. Shiba, T. Sekiguchi, H. Itoh, “Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution I: silver chloride,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 164, 183–203.
48. V. K. LaMer, R. H. Dinegar, 1950, J. Am. Chem. Soc. 72, 4847.
49. T. Sugimoto, 2007, “Underlying mechanisms in size control of uniform nanoparticles,” Journal of Colloid and Interface Science, 309, 106–118.
50. D. J. Shaw, 1992, “Introduction to colloid and surface chemistry, forth edition, ” Butterworth-Heinemann, Oxford.
51. E. Matijevic, 2007, “Nanosize Precursors as Building Blocks for Monodispersed Colloids,” Colloid Journal., 69, No. 1, 29–38.
52. J. A. Lewis, 2000, “Colloidal Processing of Ceramics,” J. Am. Ceram. Soc., 83 [10], 2341–59.
53. P. C. Hiemenz, 1986, ”Principle of colloid and surface chemistry, second edition,” Marcel Dekker, New York .
54. T. F. Todros, 1984, “Surfactants”, Academic Press, London.
55. Sigma-Aldrich, “Product information,” USA.
56. http://www.lsbu.ac.uk/water/hygel.html
57. Y. Zhu, X. An, S. Li and S. Yu, 2009, “Nanoencapsulation of b-Cypermethrin by Complex Coacervation in a Microemulsion,” J Surfact Deterg, 12, 305–311.
58. L. Zhang, F. Yu, A. J. Cole, B. Chertok, A. E. David, J. K. Wang and V. C. Yang, 2009, “Gum Arabic-Coated Magnetic Nanoparticles for Potential Application in Simultaneous Magnetic Targeting and Tumor Imaging,” The AAPS Journal, Vol. 11, 693-699.
59. D. N. Williams, K. A. Gold, T. R. P. Holoman, S. H. Ehrman and O. C. Wilson Jr., 2006, “Surface modification of magnetic nanoparticles using gum Arabic,” Journal of Nanoparticle Research, 8, 749–753.
60. A. Ye, J. Flanagan and H. Singh, 2006, “Formation of Stable nanoparticles via electrostatic complexation between sodium caseinate and GA,” Biopolymers, Vol. 82, 121–133.
61. Y. Zhu, X. An, S. Li and S. Yu, 2009, “Nanoencapsulation of b-Cypermethrin by Complex Coacervation in a Microemulsion,” J Surfact Deterg, 12, 305–311.
62. A. L. Alpatova, W. Shan, P. Babica, B. L. Upham, A. R. Rogensues, S. J. Masten, E. Drown, A. K. Mohanty, E. C. Alocilja, V. V. Tarabara, 2010, “Single walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization Effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions,” water research, 44, 505-520.
63. Y. Zhu, X. An, S. P. Li and S. Q. Yu, 2009, “Nanoencapsulation of b-Cypermethrin by Complex Coacervation in a Microemulsion,” J Surfact Deterg, 12, 305–311.
64. 林育勤,2007,以明膠或明膠-酚醛樹脂混摻體為模板合成中孔洞材料,國立成功大學碩士論文。
65. 洪崇仁、林麗惠、陳耿明,2007,Gelatin衍生物之合成及其界面活性之研究,2007高分子聯合會議。
66. M. Chen, J. J. Tan, Y. Y. Lian, D. Liu, 2008, “Preparation of Gelatin coated hydroxyapatite nanorods and the stability of its aqueous colloidal,” Applied Surface Science, 254, 2730–2735.
67. S. H. Liu, Z. H. Zhang, M. Y. Han, 2005, “Nanometer sized gold loaded gelatin silica nanocapsules,” Advanced materials, 17, 1862-1866.
68. 王明光、王敏昭,2003,實用儀器分析,合計圖書出版社,台北。
69. S. S. Banerjee, D. H. Chen, 2007, “Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent,” Journal of Hazardous Materials, 147, 792–799.
70. P. S. Gils, D. Ray, P. K. Sahoo, 2010, “Designing of silver nanoparticles in gum arabic based semi-IPN hydrogel,” International Journal of Biological Macromolecules, 46, 237–244.
71. Shu-ling Xu, Xin-yu Song, Chun-hua Fan, Guo-zhu Chen, Wei Zhao, Ting You, Si-xiu Sun, 2007, “Kinetically controlled synthesis of Cu2O microcrystals with various morphologies by adjusting pH value,” Journal of Crystal Growth, 305, 3–7.
校內:2016-07-14公開