簡易檢索 / 詳目顯示

研究生: 林蔚楷
Lin, Wei-Kai
論文名稱: 奈米碳管及石墨烯之破壞韌度估測
Estimation of fracture toughness of graphene and carbon nanotubes
指導教授: 胡潛濱
Hwu, Chyan-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 77
中文關鍵詞: 破壞韌度奈米碳管石墨烯
外文關鍵詞: carbon nanotube, graphene, fracture toughness
相關次數: 點閱:90下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於優秀的機械性質、導電性及導熱性等特性,石墨烯及奈米碳管是近年研究的熱門材料。兩者應用的一大重點,是添加進複合材料內,提升整體的機械性質。為了瞭解添加之後抗破壞效果如何,首先得測定石墨烯及奈米碳管的破壞韌度,但由於兩者尺寸、製造成本、成品良率等問題,進行實體實驗比較困難,難度較低的代替方案為電腦模擬。目前大部分的做法,是建立石墨烯及奈米碳管的分子模型,運用分子動力學來求出兩者的破壞韌度;本文則使用有限元素軟體ANSYS,先建立以節點代表碳原子、非線性樑元素代表鍵結,以模擬兩者真實分子結構的非連體模型,求出非連體模型的機械性質;之後將石墨烯視為平板、奈米碳管視為薄殼,建立兩者的連體模型,並套入從非連體模型求得的機械性質,接著使用破壞力學理論,求出石墨烯及奈米碳管的破壞韌度皆為3.37MPa√m。

    Because of their excellent mechanical, electrical, thermal and other properties, graphene and carbon nanotube are popular materials for research in recent years. One of the important applications is adding them into composite materials to enhance the material’s mechanical properties. To understand their ability to resist the failure, we have to acquire their fracture toughness first. Because of the small scale, cost and quality of manufacture, etc, conducting experiments on them physically is rather rare; instead, computer simulation is widely used. Most of the popular methods are building up molecular models of graphene and carbon nanotube and applying molecular dynamics to determine their fracture toughness. This article tries a different way: by using finite element software ANSYS, first build up molecular models of graphene and carbon nanotube and find out their mechanical properties; second, build up a plane and a cylindrical shell model, each for graphene and carbon nanotube (both are continuum model), then apply the properties we found from molecular models previously; third, apply fracture mechanics on the continuum models. In the end, the fracture toughness of graphene and carbon nanotube determined by this method are both 3.37MPa√m.

    摘要 Abstract 目錄 III 表目錄 V 圖目錄 VI 符號說明 VIII 第一章 緒論 1 1.1前言 1 1.2文獻回顧 1 1.3本文架構 3 第二章 石墨烯及奈米碳管簡介 4 2.1石墨烯簡介 4 2.1.1石墨烯的發展歷史 4 2.1.2石墨烯結構 4 2.1.3石墨烯的應用 4 2.2奈米碳管簡介 5 2.2.1奈米碳管的發展歷史 5 2.2.2單壁奈米碳管結構 6 2.2.3多壁奈米碳管結構 7 2.2.4奈米碳管的應用 8 第三章 破壞力學簡介 10 3.1裂縫近場解 10 3.2應力強度因子及破壞型態 10 3.2.1應力強度因子 10 3.2.2破壞型態 11 3.3能量釋放率 11 3.4應力強度因子的計算方法 12 3.4.1能量釋放率 12 3.4.2 Westergaard函數法 13 3.4.3虛擬裂縫閉合法 14 3.4.4 J積分 15 3.4.5 H積分 16 第四章 有限元素模擬 18 4.1非連體模型 18 4.1.1碳原子位能 18 4.1.2非線性樑元素 20 4.1.3非線性材料性質 21 4.1.4勁度與強度估測 21 4.1.5裂縫模擬 22 4.2連體模型 23 4.2.1非線性平面元素 23 4.2.2應力應變關係 23 4.2.3建模方法 24 4.2.4破壞性質的計算方式 24 第五章 破壞韌度估測 26 5.1石墨烯的破壞韌度估測 26 5.2奈米碳管的破壞韌度估測 28 第六章 結論 30 參考文獻 31

    Iijima, S., “Helical Microtubules of Graphitic Carbon”, Nature, Vol. 354,pp.56-58, 1991.
    Yu, M., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., Ruoff, R. S., “Strengthand breaking mechanism of multiwalled carbon nanotubes under tensile load”,Science, Vol. 287, pp.637-640, 2000.
    Salvetat, J. P., Briggs, G. A. D., Bonard, J. M., Bacsa, R. R., Kulik, A. J.,Sto ̈ckli, T., Burnham, N. A., Forro ́, L., “Elastic and Shear Moduli of Single- Walled Carbon Nanotube Ropes”, Phys. Rev. Lett., Vol.82, pp.944-947, 1999.
    Krishnan, A., Dujardin, E., Ebbesen, T. W., “Young's Modulus of Single -Walled Nanotubes”, Phys. Rev. B., pp.14013-14019, 1998.
    Wong, E. W., Sheehan, P. E., Lieber, C. M., “Nanobeam Mechanics: Elasticity,Strength, and Toughness of Nanorods and Nanotubes”, Science, pp.1971-1975,1997.
    Treacy, M. M. J., Ebbesen, T. W., Gibson, J. M., “Exceptionally high Young'smodulus observed for individual carbon nanotubes”, Nature, Vol. 381,pp.678-680, 1996.
    Bellucci, S., “Carbon nanotubes: Physics and applications”, Physica StatusSolid, Vol. 2, pp.34-47, 2005.
    Bao, W. X., Zhu, C. C., Cui, W. Z., “Simulation of Young’s modulus ofsingle-walled carbon nanotubes by molecular dynamics”, Physica B, Vol. 352,pp.156-163, 2004.
    Walters, D., Ericson, L. M., Casavant, M. J., Liu, J., Colbert, D. T., Smith, K.A., Smalley, R. E., “Elastic strain freely suspended single-walled carbonnanotube rope”, Phys. Rev. Lett., Vol. 74, pp. 3803, 1999.
    Dresselhaus, M. S., Dresselhaus, G., Eklund, P. C., Science of fullerence &carbon nanotubes, San Diego:Academic Press, 1996.
    Lu, J. P., “Elastic Properties of Carbon Nanotubes and Nanoropes”, Phys. Rev.Lett., Vol. 79, pp. 1297-1300, 1997.
    Hernandez, E., Goze, C., Bernier, P., Rubio, A., “Elastic properties of C andBxCyNz composite nanotubes”, Phys. Rev. Lett., Vol. 80, pp. 4502, 1998.
    Tersoff, J., “Empirical interatomic potential for carbon, with applications toamorphous carbon”, Phys. Rev. Lett., Vol. 61, pp. 2879, 1988.
    Brenner, D. W., “Empirical potential for hydrocarbons for use in simulating thechemical vapor deposition of diamond films”, Phys. Rev. B., pp. 9458, 1990.
    Sun, H., “COMPASS: An ab initial forcefield optimized for condensed-phaseapplications”, Journal of physics and chemistry B, Vol. 102, pp. 7338, 1998.
    Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., Sinnott,S. B., “A second-generation reactive empirical bond order (REBO) potentialenergy expression for hydrocarbons”, J. Phys.: Condens. Matter, Vol. 14, pp.783-802, 2002.
    Belytschko, T., Xiao, S. P., Schatz, G. C., Ruoff, R. S., “Atomistic simulationsof nanotube fracture”, Phys. Rev. B., Vol. 65, pp. 235430, 2002.
    Demczyk, B. G., Wang, Y. M., Cumings, J., Hetman, M., Han, W., Zettl, A.,Ritchie, R. O., “Direct mechanical measurement of the tensile strength andelastic modulus of multiwalled carbon nanotubes”, Materials Science andEngineeringr., Vol. 344, pp. 173-178, 2002.
    Wei, C., Cho, K., Srivastava, D., “Tensile strength of carbon nanotubes underrealistic temperature and strain rate”, Phys. Rev. B., Vol. 67, pp. 115407, 2003.
    Xiao, J. R., Gama, B. A., Gillespie, J. W., “An analytical molecular structuralmechanics model for the mechanical properties of carbon nanotubes”,International Journal of Solids and Structures, Vol. 42, pp. 3075-3092, 2005.
    Liew, K.M., He, X. Q., Wong, C. H., “On the study of elastic and plasticproperties of multi-walled carbon nanotubes under axial tension usingmolecular dynamics simulation”, Acta Materialia, Vol. 52, pp.2521-2527, 2004.
    Tserpes, K. I., Papanikos, P., Tsirkas, S. A., “A progressive fracture model forcarbon nanotubes”, Composites: Part B, Vol. 37, pp. 662–669, 2006.
    Duan, W. H., Wang, Q., Liew, K. M., He, X. Q., “Molecular mechanicsmodeling of carbon nanotube fracture”, Carbon, Vol. 45, pp. 1769–1776, 2007.
    Wernik, J. M., Meguid, S. A., “Atomistic-based continuum modeling of thenonlinear behavior of carbon nanotubes”, Acta Mech, Vol. 212, pp.167-179,2009.
    Baykasoglu, C., Mugan, A., “Nonlinear fracture analysis of single-layergraphene sheets”, Engineering Fracture Mechanics, Vol. 96, pp. 241-250, 2012.
    Li, C., Chou, T. W., “A structural mechanics approach for the analysis ofcarbon nanotubes”, International Journal of Solids and Structures, Vol. 40, pp.2489-2499, 2003.
    劉宇揚,“多壁奈米碳管力學性質之估測”,國立成功大學航空太空研究所碩士論文 2007.
    徐偉盛,“以分子動力學及原子力顯微鏡估測單壁奈米碳管之楊氏係數”,國立成功大學航空太空研究所碩士論文,2008.
    林朝順,“奈米複合材料機械性質之估測”,國立成功大學航空太空研究所碩士論文,2009.
    Lennard-Jones, J. E., “The determination of molecular fields: from thevariation of the viscosity of a gas with temperature”, Proceedings of the royalmicroscopical society, Vol. 106A, pp. 441, 1924.
    Cornell, W. D., Cieplak, P., Bayly, C. I., “A second generation force-field forthe simulation of proteins, nucleic-acids, and Organic-molecules”, J. Am.Chem. Soc.Vol. 117, pp. 5179-5197, 1995.
    Kelly, B. T., “The Physics of Graphite”, Applied Science Publishers, London,1981.
    Antonio, P., David, M., Mary, C., “Mechanics of deformation of single-andmulti-wall carbon nanotubes”, Journal of the mechanics and Physics of solid, ,pp.789-821, 2004.
    Zhang, X. F., Zhang, X. B., Tendeloo, G V., “Reciprocal space of carbon tubes:A detailed interpretation of the electron diffraction effects”, Ultramicroscopy,Vol. 57, pp.237-249, 1994.
    Gere, J. M., Goodno, B. J., Mechanics of Materials, SI Edition 8th Edition,CENGAGE Learning, Boston, 2012.
    ANSYS 操作手冊
    Zhou, P., Shi, G., “Study of Poisson Ratios of Single-Walled CarbonNanotubes based on an Improved Molecular Structural Mechanics Model, ”CMC, Vol. 22, pp.147-168, 2011.
    Takayuki Kitamura, Yoshitaka Umeno, Ryoji Fushino, “Instability criterion ofinhomogeneous atomic system”, Materials Science and Engineering A, Vol.379, pp.229-233, 2004.
    Takayuki Kitamura, Yoshitaka Umeno, Nagatomo Tsuji, “Analytical evaluationof unstable deformation criterion of atomic structure and its application tonanostructure”, Computational Materials Science, Vol. 29, pp. 499-510, 2004.
    Takahiro Shimada, Satoru Okawa, Shinichiro Minami, Takayuki Kitamura,“Simplifified evaluation of mechanical instability in large-scale atomicstructures, ” Materials Science and Engineering A, Vol. 513, pp.166-171,2009.
    Hwu, C., Anisotropic Elastic Plates, Springer, New York, 2010.
    侯彥嘉,“奈米碳管強度及勁度之估測”,國立成功大學航空太空研究所碩士論文,2014.
    葉育魁,“Explicit expressions of mechanical properties for graphene sheets andcarbon nanotubes via a molecular-continuum model”, Appl. Phys. A 116125-140, 2014.
    Yeh, Y. K. ,Hwu, C, 2016, “Prediction of strength and fracture toughness ofgraphene and carbon nanotube by modified molecular – continuum model”,Submitted for publication.
    Zhang, B., Mei, L., Xiao, H.,“Nanofracture in graphene under complexmechanical stresses”, Appl. Phys. Lett. 101 121915.1-121915.5., 2012
    Zhang, P., Ma, L., Fan, F., Zeng, Z., Peng, C., Loya, P. E., Liu, Z., Gong, Y.,Zhang, J., Zhang, X., Zang, X., Ajayan, P. M., Zhu, T., Lou, J.,“Fracturetoughness of graphene”, Nat. Commun. 4782 1-7., 2014
    Xu, M., Tabarrael, A., Paci, J. T., Oswald, J., Belytschko, T.,“A coupledquantum/continuum mechanics study of graphene fracture”, Int. J. Frac. 173163-173., 2012
    Minh-Nguyen Ky, Young-Jin Yum, “Mode I fracture toughness analysis of asingle-layer graphene sheet”, Journal of Mechanical Science and Technology,28 (9) 3645-3652, 2014
    Nicola M. Pugnoy, Rodney S. Ruoff, “Quantized fracture mechanics”,Philosophical Magazine, Vol. 84, No. 27, 2829–2845, 2004
    Andrzej Leski, “Implementation of the virtual crack closure technique inengineering FE calculations”, Finite Element in Analysis and Design, volume43,issue3,261-268, 2007
    Andrey Omeltchenko, Jin Yu, Rajiv Kalia, Priya Vashishta, “Crack frontpropagation and fracture in a graphite sheet: a molecular-dynamic study onparallel computers”, Physical review letters, volume78, number11, 2148-2151,1997
    M. L. Williams, “On the stress distribution at a base of stationary crack”,ASME Trans, J. Appl. Mech.,24, 109-114, 1957
    S. J. Stuart, A. B. Tutein and J. A. Harrison. “A reactive potential forhydrocarbons with intermolecular interactions”, J. Chem. Phys, 112 (2000)6472-6486.
    J. S. Huang, L. J. Gibson, “Fracture toughness of honeycombs”, ActaMetallurgica et Materialia,39(1991), 1627-1636
    GangSeob Jung, Zhao Qin, Markus J. Buehler,” Molecular mechanics ofpolycrystalline grapheme with enhanced fracture toughness”, ExtremeMechanics Letters 2 (2015), 52-59
    Chin-Teh Sun, Zhihe Jin, “Fracture mechanics”, Academic Press, 2011
    J. F. Knott, “Fundamentals of fracture mechanics”, Butterworth & CoPublishers Ltd, 1973
    J. C. Meyer et al, “The structure of suspended grapheme sheets”, Nature, 446,2007, 60-63

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE