簡易檢索 / 詳目顯示

研究生: 蔡舒涵
Tsai, Shu-Han
論文名稱: 利用質譜儀為基礎的代謝體方法進行SMAIT、MDF與XCMS尋找毒物暴露指標之參數最佳化
Optimizing parameters of SMAIT, MDF and XCMS for toxicant exposure marker discovery using mass spectrometry-based metabolomics approaches
指導教授: 廖寶琦
Liao, Pao-Chi
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 46
中文關鍵詞: 代謝體學參數最佳化毒物暴露指標尋找
外文關鍵詞: Metabolomics, Optimized parameter, Toxicant exposure marker discovery
相關次數: 點閱:170下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鄰苯二甲酸酯被廣泛的使用在許多產品且被視為內分泌干擾物,其中鄰苯二甲酸二異壬酯 (Di-isononyl phthalate, DINP) 可能引起許多健康問題,因此毒物暴露指標之尋找成為重要的議題。代謝體學是研究代謝物的學問,而液相層析串聯質譜儀能幫助代謝物的鑑定。被鑑定出的代謝物一旦能在生物樣本裡被驗證,它們就可做為暴露指標。由於液相層析串聯質譜儀產生非常大量的數據,許多方法如同位素追蹤法 (Signal mining algorithm with isotope tracing, SMAIT)、質量虧損過濾法 (Mass defect filter, MDF)及XCMS被用來從數據中篩選出可能的代謝物訊號。在此研究中,為了找尋毒物暴露指標,我們使用已被驗證的14個暴露指標來做SMAIT、MDF及XCMS這三種方法的參數最佳化。除了14個暴露指標之外,以這三種方法篩選出的其它訊號被定義為偽陽性暴露指標。我們調整SMAIT、MDF與XCMS的參數來探討有多少暴露指標包含在結果內,當最多暴露指標從高效液相層析質譜數據中被篩選出且包含最少的偽陽性暴露指標時,我們能得到SMAIT、MDF與XCMS的最佳化參數。SMAIT的最佳化的參數為在同位素配對尋找步驟中質量偏移設在0.004 Da、同位素配對訊號強度反應中同位素配對之質量偏移設為0.003 Da;在MDF方法中,當選擇訊噪比大於等於3之訊號時能得到最佳的結果;另外在XCMS的最佳化參數為profstep設為1、mzwid設為0.01、minfrac設為0.5與bw設為6。SMAIT、MDF與XCMS之最佳化參數能應用在未來尋找毒物暴露指標之研究中。

    Phthalates are widely used in many products and regarded as endocrine disrupters. Di-isononyl phthalate (DINP) is one of phthalates may induce many health problems. Due to this reason, toxicant exposure marker discovery becomes an important issue. Metabolomics is the study of metabolite and liquid chromatography coupled with mass spectrometry (LC-MS) can develop the identification of metabolites. Once these metabolites are validated in biological samples, they are considered exposure markers. Owing to a large number of data generated from LC-MS, many methods such as signal mining algorithm with isotope tracing (SMAIT), mass defect filter (MDF) and XCMS are used in processing data to select out probable metabolite signals. Here, we used 14 validated exposure markers to optimize parameters of three methods, SMAIT, MDF and XCMS for toxicant exposure marker discovery. Except for these 14 exposure markers, the other signals filtered by these three methods were defined as false-positive hits. We adjusted parameters of SMAIT, MDF and XCMS to investigate how many of these 14 exposure markers covered in the results. The optimized parameters of SMAIT, MDF and XCMS were obtained when the maximized number of these 14 exposure markers was filtered out in an HPLC-MS dataset with the least number of false-positive hits. The optimized parameters of SMAIT were 0.004 Da set at mass shift in isotopic pair (IP) finding step, and 0.003 Da at mass shift between IPs in IP response ratio analysis. MDF method yielded optimal results when all signals with S/N ≥ 3 were included for consideration. The optimized parameters of XCMS were 1 profstep, 0.01 at mzwid, 0.5 at minfrac and 6 at bw. These optimized parameters of SMAIT, MDF and XCMS can be applied in the future investigations for toxicant exposure marker discovery.

    摘要 II Abstract III 致謝 V Content VI List of Tables VII List of Figures VIII Chapter 1 Research background 1 1-1 Metabolomics 1 1-1-1 Definition 1 1-1-2 Metabolite detection and identification by mass spectrometry 1 1-1-3 Signal mining algorithm with isotope tracing (SMAIT) 3 1-1-4 Mass defect filter (MDF) 4 1-1-5 XCMS 4 1-2 Phthalate 5 1-3 Di-isononyl phthalate (DINP) 7 1-3-1 Exposure routes 7 1-3-2 Di-isononyl phthalate toxicity 8 1-3-3 Di-isononyl phthalate metabolism 8 Chapter 2 Objectives 11 Chapter 3 Materials and methods 12 3-1 Research scheme 12 3-2 Experimental data 13 3-2-1 MINP selection 13 3-2-2 MINP in vitro metabolism 15 3-2-3 LC-MS analysis 17 3-3 Data processing in SMAIT, MDF and XCMS 19 3-3-1 Method of SMAIT to select out probable DINP metabolite signals 19 3-3-2 Method of MDF to select out probable DINP metabolite signals 22 3-3-3 Methods of XCMS to select out probable metabolite signals 23 3-4 Method to optimize parameters of SMAIT, MDF and XCMS 26 Chapter 4 Results and discussion 27 4-1 The result of exposure markers discovery with different parameters of SMAIT 27 4-2 The result of exposure markers discovery after MDF processing 34 4-3 The result of exposure markers discovery with different parameters of XCMS 38 4-4 Comparison the result of exposure marker discovery in SMAIT, MDF and XCMS 39 Chapter 5 Conclusion 41 Chapter 6 References 43 List of Tables Table 1. Classification and main usage of phthalates 6 Table 2. LC gradient 19 Table 3. 14 validated exposure markers in previous study 26 Table 4. Signals filtered out from SMAIT with parametric combination 1 27 Table 5. Sensitivity and specificity for discovering exposure marker with different cut-off value for R 29 Table 6. Sensitivity and specificity for discovering exposure marker with different cut-off value for R when SMAIT parameter set on narrowed RT shift 31 Table 7. Sensitivity and specificity for discovering exposure marker with narrowed mass shift in isotopic pair finding step 31 Table 8. Sensitivity and specificity for discovering exposure marker with narrowed mass shift in IPRR analysis 32 Table 9 Different number of exposure marker can be filtered out with changing response ratio of D0 and D4. 34 Table 10 Comparison of different criteria for selecting signals in MDF 36 Table 11 Results of exposure marker discovering with different mass defect shift. 36 Table 12.Results for discovering exposure markers with different parameters in XCMS 39 List of Figures Figure 1. Consumption of plasticizer 7 Figure 2. Metabolic pathways of phthalates 9 Figure 3. Suggested mechanism of DINP metabolism 10 Figure 4. Study design 13 Figure 5. Chemical structures of the precursor standards 14 Figure 6. Workflow of in vitro metabolism 17 Figure 7. Schematic diagrams of SMAIT processing and parameter settings. 22 Figure 8. Workflow of MDF processing 23 Figure 9. Parameter setting of XCMS 25 Figure 10. Sensitivity and specificity for discovering exposure marker with different cut-off value for R 30 Figure 11.Sensitivity for discovering exposure marker with different mass shift 33 Figure 12 The TIC after MDF processing 35 Figure 13 Different number of exposure markers can be filtered out with different mass defect shift. 37 Figure 14. Efficiencies of exposure markers discovery by using different methods. 40

    Abramson FP. The use of stable isotopes in drug metabolism studies. In: Proceedings of the Seminars in perinatology, 2001, Vol. 25Elsevier, 133-138.

    Boberg J, Christiansen S, Axelstad M, Kledal TS, Vinggaard AM, Dalgaard M, et al. 2011. Reproductive and behavioral effects of diisononyl phthalate (dinp) in perinatally exposed rats. Reprod Toxicol 31:200-209.

    Frederiksen H, Skakkebaek NE, Andersson AM. 2007. Metabolism of phthalates in humans. Mol Nutr Food Res 51:899-911.

    Hendriks MMWB, van Eeuwijk FA, Jellema RH, Westerhuis JA, Reijmers TH, Hoefsloot HCJ, et al. 2011. Data-processing strategies for metabolomics studies. Trac-Trend Anal Chem 30:1685-1698.

    Hsu JF, Peng LW, Li YJ, Lin LC, Liao PC. 2011. Identification of di-isononyl phthalate metabolites for exposure marker discovery using in vitro/in vivo metabolism and signal mining strategy with lc-ms data. Anal Chem 83:8725-8731.

    Katajamaa M, Oresic M. 2007. Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158:318-328.

    Kavlock R, Boekelheide K, Chapin R, Cunningham M, Faustman E, Foster P, et al. 2002. Ntp center for the evaluation of risks to human reproduction: Phthalates expert panel report on the reproductive and developmental toxicity of di-n-hexyl phthalate. Reprod Toxicol 16:709-719.

    Koch HM, Angerer J. 2007. Di-iso-nonylphthalate (dinp) metabolites in human urine after a single oral dose of deuterium-labelled dinp. Int J Hyg Envir Heal 210:9-19.

    Koch HM, Muller J, Angerer J. 2007. Determination of secondary, oxidised di-iso-nonylphthalate (dinp) metabolites in human urine representative for the exposure to commercial dinp plasticizers. J Chromatogr B 847:114-125.

    Kransler KM, Bachman AN, McKee RH. 2012. A comprehensive review of intake estimates of di-isononyl phthalate (dinp) based on indirect exposure models and urinary biomonitoring data. Regulatory toxicology and pharmacology : RTP 62:248-256.

    Lin LC, Wu HY, Tseng VSM, Chen LC, Chang YC, Liao PC. 2010. A statistical procedure to selectively detect metabolite signals in lc-ms data based on using variable isotope ratios. J Am Soc Mass Spectr 21:232-241.

    Masutomi N, Shibutani M, Takagi H, Uneyama C, Takahashi N, Hirose M. 2003. Impact of dietary exposure to methoxychlor, genistein, or diisononyl phthalate during the perinatal period on the development of the rat endocrine/reproductive systems in later life. Toxicology 192:149-170.

    Otake T, Yoshinaga J, Yanagisawa Y. 2004. Exposure to phthalate esters from indoor environment. J Expo Anal Env Epid 14:524-528.

    Putri SP, Nakayama Y, Matsuda F, Uchikata T, Kobayashi S, Matsubara A, et al. 2013. Current metabolomics: Practical applications. Journal of bioscience and bioengineering 115:579-589.

    Roux A, Xu Y, Heilier JF, Olivier MF, Ezan E, Tabet JC, et al. 2012. Annotation of the human adult urinary metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear quadrupole ion trap-orbitrap mass spectrometer. Anal Chem 84:6429-6437.

    Schettler T. 2006. Human exposure to phthalates via consumer products. Int J Androl 29:134-139.

    Silva MJ, Kato K, Wolf C, Samandar E, Silva SS, Gray EL, et al. 2006. Urinary biomarkers of di-isononyl phthalate in rats. Toxicology 223:101-112.

    Silva MJ, Reidy JA, Preau Jr JL, Needham LL, Calafat AM. 2006. Oxidative metabolites of diisononyl phthalate as biomarkers for human exposure assessment. Environmental health perspectives:1158-1161.

    Sleno L. 2012. The use of mass defect in modern mass spectrometry. J Mass Spectrom 47:226-236.

    Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. 2006. Xcms: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779-787.

    Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. 2012. Xcms online: A web-based platform to process untargeted metabolomic data. Anal Chem 84:5035-5039.

    Teitelbaum SL, Mervish N, Moshier EL, Vangeepuram N, Galvez MP, Calafat AM, et al. 2012. Associations between phthalate metabolite urinary concentrations and body size measures in new york city children. Environ Res 112:186-193.

    Tolonen A, Turpeinen M, Pelkonen A. 2009. Liquid chromatography-mass spectrometry in in vitro drug metabolite screening. Drug Discov Today 14:120-133.

    Wilson VS, Lambright C, Furr J, Ostby J, Wood C, Held G, et al. 2004. Phthalate ester-induced gubernacular lesions are associated with reduced insl3 gene expression in the fetal rat testis. Toxicol Lett 146:207-215.

    Wittassek M, Angerer J. 2008. Phthalates: Metabolism and exposure. Int J Androl 31:131-136.

    Zhang H, Ma L, He K, Zhu M. 2008. An algorithm for thorough background subtraction from high‐resolution lc/ms data: Application to the detection of troglitazone metabolites in rat plasma, bile, and urine. J Mass Spectrom 43:1191-1200.

    Zhang H, Zhang D, Ray K, Zhu M. 2009. Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry. J Mass Spectrom 44:999-1016.

    Zhang HY, Zhang DL, Ray K. 2003. A software filter to remove interference ions from drug metabolites in accurate mass liquid chromatography/mass spectrometric analyses. J Mass Spectrom 38:1110-1112.

    Zhu M, Ma L, Zhang H, Humphreys WG. 2007. Detection and structural characterization of glutathione-trapped reactive metabolites using liquid chromatography-high-resolution mass spectrometry and mass defect filtering. Anal Chem 79:8333-8341.

    Zhu MS, Zhang HY, Humphreys WG. 2011. Drug metabolite profiling and identification by high-resolution mass spectrometry. J Biol Chem 286:25419-25425.

    無法下載圖示 校內:2025-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE