| 研究生: |
蔡舒涵 Tsai, Shu-Han |
|---|---|
| 論文名稱: |
利用質譜儀為基礎的代謝體方法進行SMAIT、MDF與XCMS尋找毒物暴露指標之參數最佳化 Optimizing parameters of SMAIT, MDF and XCMS for toxicant exposure marker discovery using mass spectrometry-based metabolomics approaches |
| 指導教授: |
廖寶琦
Liao, Pao-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 代謝體學 、參數最佳化 、毒物暴露指標尋找 |
| 外文關鍵詞: | Metabolomics, Optimized parameter, Toxicant exposure marker discovery |
| 相關次數: | 點閱:170 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鄰苯二甲酸酯被廣泛的使用在許多產品且被視為內分泌干擾物,其中鄰苯二甲酸二異壬酯 (Di-isononyl phthalate, DINP) 可能引起許多健康問題,因此毒物暴露指標之尋找成為重要的議題。代謝體學是研究代謝物的學問,而液相層析串聯質譜儀能幫助代謝物的鑑定。被鑑定出的代謝物一旦能在生物樣本裡被驗證,它們就可做為暴露指標。由於液相層析串聯質譜儀產生非常大量的數據,許多方法如同位素追蹤法 (Signal mining algorithm with isotope tracing, SMAIT)、質量虧損過濾法 (Mass defect filter, MDF)及XCMS被用來從數據中篩選出可能的代謝物訊號。在此研究中,為了找尋毒物暴露指標,我們使用已被驗證的14個暴露指標來做SMAIT、MDF及XCMS這三種方法的參數最佳化。除了14個暴露指標之外,以這三種方法篩選出的其它訊號被定義為偽陽性暴露指標。我們調整SMAIT、MDF與XCMS的參數來探討有多少暴露指標包含在結果內,當最多暴露指標從高效液相層析質譜數據中被篩選出且包含最少的偽陽性暴露指標時,我們能得到SMAIT、MDF與XCMS的最佳化參數。SMAIT的最佳化的參數為在同位素配對尋找步驟中質量偏移設在0.004 Da、同位素配對訊號強度反應中同位素配對之質量偏移設為0.003 Da;在MDF方法中,當選擇訊噪比大於等於3之訊號時能得到最佳的結果;另外在XCMS的最佳化參數為profstep設為1、mzwid設為0.01、minfrac設為0.5與bw設為6。SMAIT、MDF與XCMS之最佳化參數能應用在未來尋找毒物暴露指標之研究中。
Phthalates are widely used in many products and regarded as endocrine disrupters. Di-isononyl phthalate (DINP) is one of phthalates may induce many health problems. Due to this reason, toxicant exposure marker discovery becomes an important issue. Metabolomics is the study of metabolite and liquid chromatography coupled with mass spectrometry (LC-MS) can develop the identification of metabolites. Once these metabolites are validated in biological samples, they are considered exposure markers. Owing to a large number of data generated from LC-MS, many methods such as signal mining algorithm with isotope tracing (SMAIT), mass defect filter (MDF) and XCMS are used in processing data to select out probable metabolite signals. Here, we used 14 validated exposure markers to optimize parameters of three methods, SMAIT, MDF and XCMS for toxicant exposure marker discovery. Except for these 14 exposure markers, the other signals filtered by these three methods were defined as false-positive hits. We adjusted parameters of SMAIT, MDF and XCMS to investigate how many of these 14 exposure markers covered in the results. The optimized parameters of SMAIT, MDF and XCMS were obtained when the maximized number of these 14 exposure markers was filtered out in an HPLC-MS dataset with the least number of false-positive hits. The optimized parameters of SMAIT were 0.004 Da set at mass shift in isotopic pair (IP) finding step, and 0.003 Da at mass shift between IPs in IP response ratio analysis. MDF method yielded optimal results when all signals with S/N ≥ 3 were included for consideration. The optimized parameters of XCMS were 1 profstep, 0.01 at mzwid, 0.5 at minfrac and 6 at bw. These optimized parameters of SMAIT, MDF and XCMS can be applied in the future investigations for toxicant exposure marker discovery.
Abramson FP. The use of stable isotopes in drug metabolism studies. In: Proceedings of the Seminars in perinatology, 2001, Vol. 25Elsevier, 133-138.
Boberg J, Christiansen S, Axelstad M, Kledal TS, Vinggaard AM, Dalgaard M, et al. 2011. Reproductive and behavioral effects of diisononyl phthalate (dinp) in perinatally exposed rats. Reprod Toxicol 31:200-209.
Frederiksen H, Skakkebaek NE, Andersson AM. 2007. Metabolism of phthalates in humans. Mol Nutr Food Res 51:899-911.
Hendriks MMWB, van Eeuwijk FA, Jellema RH, Westerhuis JA, Reijmers TH, Hoefsloot HCJ, et al. 2011. Data-processing strategies for metabolomics studies. Trac-Trend Anal Chem 30:1685-1698.
Hsu JF, Peng LW, Li YJ, Lin LC, Liao PC. 2011. Identification of di-isononyl phthalate metabolites for exposure marker discovery using in vitro/in vivo metabolism and signal mining strategy with lc-ms data. Anal Chem 83:8725-8731.
Katajamaa M, Oresic M. 2007. Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158:318-328.
Kavlock R, Boekelheide K, Chapin R, Cunningham M, Faustman E, Foster P, et al. 2002. Ntp center for the evaluation of risks to human reproduction: Phthalates expert panel report on the reproductive and developmental toxicity of di-n-hexyl phthalate. Reprod Toxicol 16:709-719.
Koch HM, Angerer J. 2007. Di-iso-nonylphthalate (dinp) metabolites in human urine after a single oral dose of deuterium-labelled dinp. Int J Hyg Envir Heal 210:9-19.
Koch HM, Muller J, Angerer J. 2007. Determination of secondary, oxidised di-iso-nonylphthalate (dinp) metabolites in human urine representative for the exposure to commercial dinp plasticizers. J Chromatogr B 847:114-125.
Kransler KM, Bachman AN, McKee RH. 2012. A comprehensive review of intake estimates of di-isononyl phthalate (dinp) based on indirect exposure models and urinary biomonitoring data. Regulatory toxicology and pharmacology : RTP 62:248-256.
Lin LC, Wu HY, Tseng VSM, Chen LC, Chang YC, Liao PC. 2010. A statistical procedure to selectively detect metabolite signals in lc-ms data based on using variable isotope ratios. J Am Soc Mass Spectr 21:232-241.
Masutomi N, Shibutani M, Takagi H, Uneyama C, Takahashi N, Hirose M. 2003. Impact of dietary exposure to methoxychlor, genistein, or diisononyl phthalate during the perinatal period on the development of the rat endocrine/reproductive systems in later life. Toxicology 192:149-170.
Otake T, Yoshinaga J, Yanagisawa Y. 2004. Exposure to phthalate esters from indoor environment. J Expo Anal Env Epid 14:524-528.
Putri SP, Nakayama Y, Matsuda F, Uchikata T, Kobayashi S, Matsubara A, et al. 2013. Current metabolomics: Practical applications. Journal of bioscience and bioengineering 115:579-589.
Roux A, Xu Y, Heilier JF, Olivier MF, Ezan E, Tabet JC, et al. 2012. Annotation of the human adult urinary metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear quadrupole ion trap-orbitrap mass spectrometer. Anal Chem 84:6429-6437.
Schettler T. 2006. Human exposure to phthalates via consumer products. Int J Androl 29:134-139.
Silva MJ, Kato K, Wolf C, Samandar E, Silva SS, Gray EL, et al. 2006. Urinary biomarkers of di-isononyl phthalate in rats. Toxicology 223:101-112.
Silva MJ, Reidy JA, Preau Jr JL, Needham LL, Calafat AM. 2006. Oxidative metabolites of diisononyl phthalate as biomarkers for human exposure assessment. Environmental health perspectives:1158-1161.
Sleno L. 2012. The use of mass defect in modern mass spectrometry. J Mass Spectrom 47:226-236.
Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. 2006. Xcms: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779-787.
Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. 2012. Xcms online: A web-based platform to process untargeted metabolomic data. Anal Chem 84:5035-5039.
Teitelbaum SL, Mervish N, Moshier EL, Vangeepuram N, Galvez MP, Calafat AM, et al. 2012. Associations between phthalate metabolite urinary concentrations and body size measures in new york city children. Environ Res 112:186-193.
Tolonen A, Turpeinen M, Pelkonen A. 2009. Liquid chromatography-mass spectrometry in in vitro drug metabolite screening. Drug Discov Today 14:120-133.
Wilson VS, Lambright C, Furr J, Ostby J, Wood C, Held G, et al. 2004. Phthalate ester-induced gubernacular lesions are associated with reduced insl3 gene expression in the fetal rat testis. Toxicol Lett 146:207-215.
Wittassek M, Angerer J. 2008. Phthalates: Metabolism and exposure. Int J Androl 31:131-136.
Zhang H, Ma L, He K, Zhu M. 2008. An algorithm for thorough background subtraction from high‐resolution lc/ms data: Application to the detection of troglitazone metabolites in rat plasma, bile, and urine. J Mass Spectrom 43:1191-1200.
Zhang H, Zhang D, Ray K, Zhu M. 2009. Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry. J Mass Spectrom 44:999-1016.
Zhang HY, Zhang DL, Ray K. 2003. A software filter to remove interference ions from drug metabolites in accurate mass liquid chromatography/mass spectrometric analyses. J Mass Spectrom 38:1110-1112.
Zhu M, Ma L, Zhang H, Humphreys WG. 2007. Detection and structural characterization of glutathione-trapped reactive metabolites using liquid chromatography-high-resolution mass spectrometry and mass defect filtering. Anal Chem 79:8333-8341.
Zhu MS, Zhang HY, Humphreys WG. 2011. Drug metabolite profiling and identification by high-resolution mass spectrometry. J Biol Chem 286:25419-25425.
校內:2025-12-31公開