簡易檢索 / 詳目顯示

研究生: 林信偉
Lin, Hsing-Wei
論文名稱: 用石墨烯增強銀奈米線透明薄膜的抗氧化能力
Enhancing the oxidation resistance of silver nanowire TCFs by graphene
指導教授: 謝馬力歐
Mario Hofmann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 64
中文關鍵詞: 石墨烯銀納米線抗氧化透明導電薄膜
外文關鍵詞: Graphene, silver nanowire, anti-oxidation, TCFs
相關次數: 點閱:84下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們已經用噴射沉積和真空過濾,使用氧化還原石墨烯和銀納米線的不同均
    勻薄膜,並通過循環伏安法測量其薄層電阻,透光率,和它的抗腐蝕性,以氯化
    氫(水溶液)。雖然噴墨系統顯示由石墨烯增強銀納米線的抗氧化性的成效不高。
    然而,真空泵系統有助於證明氧化還原石墨烯可以保護銀納米線。

    We have used spray deposition and vacuum filtration to make different
    homogeneous films of rGO and silver nanowire, and measured its sheet resistance,
    transmittance, and its anti-corrosion property to HCl(aq)by cyclic voltammetry.
    Although the spray system doesn't show good result of enhancing the oxidation
    resistance of silver nanowire TCFs by graphene and the spray system doesn't work
    before doing more samples. However, the vacuum pump system helps proving that rGO
    can protect silver nanowire.

    Table of contents Abstract .......................................................................................................................... 1 List of Figures ................................................................................................................. 6 List of tables ................................................................................................................. 11 Chapter 1. Introduction: .............................................................................................. 12 1.1 TCFs .................................................................................................................... 12 1.1.1 What is a TCF and what is it used for .......................................................... 12 1.1.2Promise of Ag Nanowire TCFs ...................................................................... 13 1.2Graphene material .............................................................................................. 14 1.2.1Properties and applications of graphene ..................................................... 14 1.2.1.1 The foundation of graphene .................................................... 14 1.2.1.2 Application ............................................................................... 15 1.3 Silver nanowire material .................................................................................... 17 1.3.1 What are silver nanowires? ......................................................................... 17 1.3.2Silver nanowire synthesis ............................................................................. 17 1.3.2.1 Polyol process .......................................................................... 17 1.3.2.2Seed-mediated growth ............................................................. 18 1.3.2.3Soft solution process ................................................................ 18 1.3.2.4 Template-synthesized .............................................................. 18 1.4Problems with Ag Nanowires .............................................................................. 21 1.5Project: Using graphene as corrosion barrier ..................................................... 21 1.5.1 Graphene based corrosion barriers ............................................................. 21 Chapter 2.Methods: ..................................................................................................... 22 2.1Overview ............................................................................................................. 22 2.2Spray system and ultrasoinc atomization ........................................................... 24 2.3 Vacuum pump and filter system ........................................................................ 26 2.4 Characterization ................................................................................................. 28 2.4.1 Sheet resistance measurement and sheet resistance machine .................. 28 2.4.2 Scanning electron microscope..................................................................... 32 2.4.3 Transmittance measurement andlaser transmittance detector ................. 33 2.4.4 Cyclic voltammetry measurement andcyclicvoltammetry machine ........... 35 2.5 Chemicals and characterization instruments ..................................................... 39 3.Results and discussion .............................................................................................. 41 3.1.Properties of graphene/Ag-NW hybrid films ..................................................... 41 3.1.1. Morphology ................................................................................................ 41 3.1.2 Electrical transport ...................................................................................... 42 3.2 Enhanced stability of graphene/AgNW hybrid films .......................................... 44 3.3Mechanism of corrosion protection ................................................................... 48 3.3.1Electrochemical characterization ................................................................. 48 3.3.3 Diffusion coefficient .................................................................................... 52 3.3.2Impact of morphology on corrosion protection ........................................... 54 4.Conclusions ........................................................................................................... 57 4.1. Outlook ................................................................................................................. 58 5. Reference ................................................................................................................. 59

    1. Krebs, F.C., All solution roll-to-roll processed polymer solar cells free from indium-tinoxide and vacuum coating steps. Organic Electronics, 2009. 10(5): p. 761-768.
    2. Tseng, S.-F., et al., Laser scribing of indium tin oxide (ITO) thin films deposited on various substrates for touch panels. Applied Surface Science, 2010. 257(5): p. 14871494.
    3. Cui, J., et al., Indium Tin Oxide Alternatives—High Work Function Transparent Conducting Oxides as Anodes for Organic Light‐Emitting Diodes. Advanced materials, 2001. 13(19): p. 1476-1480.
    4. Chopra, K.L., S. Major, and D.K. Pandya, Transparent Conductors - a Status Review. Thin Solid Films, 1983. 102(1): p. 1-46.
    5. Leterrier, Y., et al., Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films, 2004. 460(1-2): p. 156-166.
    6. Lee, S.H., S. Lim, and H. Kim, Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film. Thin Solid Films, 2015. 589: p. 403-407.
    7. Geim, A., et al., Nobel Prize for graphene. Nature materials, 2007. 6: p. 183-192.
    8. Apell, S.P., G. Hanson, and C. Hägglund, High optical absorption in graphene. arXiv preprint arXiv:1201.3071, 2012.
    9. Pop, E., V. Varshney, and A.K. Roy, Thermal properties of graphene: Fundamentals and applications. MRS bulletin, 2012. 37(12): p. 1273-1281.
    10. Neto, A.C., et al., The electronic properties of graphene. Reviews of modern physics, 2009. 81(1): p. 109.
    11. Qiu, Y., et al., Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale, 2014. 6(20): p. 11744-11755.
    12. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology, 2010. 5(8): p. 574-578.
    13. del Corro, E., et al., Strain Assessment in Graphene Through the Raman 2D ' Mode. Journal of Physical Chemistry C, 2015. 119(45): p. 25651-25656.
    14. Ferralis, N., Probing mechanical properties of graphene with Raman spectroscopy. Journal of Materials Science, 2010. 45(19): p. 5135-5149.
    15. 蕭暐翰 and 李紫原, 奈米銀線之製備 , 性質與感測應用 . 2011.
    16. Chen, S., et al., Neutral-pH PEDOT: PSS as over-coating layer for stable silver nanowire flexible transparent conductive films. Organic Electronics, 2014. 15(12): p. 3654-3659.
    17. De, S., et al., Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS nano, 2009. 3(7): p. 1767-1774.
    18. Liu, C.-H. and X. Yu, Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res. Lett, 2011. 6(1): p. 75.
    19. Coskun, S., B. Aksoy, and H.E. Unalan, Polyol synthesis of silver nanowires: an extensive parametric study. Crystal Growth & Design, 2011. 11(11): p. 4963-4969.
    20. Sun, Y. and Y. Xia, Large-scale synthesis of uniform silver nanowires through a soft, selfseeding, polyol process. Nature, 1991. 353(1991): p. 737.
    21. Murphy, C.J. and N.R. Jana, Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials, 2002. 14(1): p. 80.
    22. Chang, G., et al., Silver-nanoparticle-attached indium tin oxide surfaces fabricated by a seed-mediated growth approach. The Journal of Physical Chemistry B, 2005. 109(3): p. 1204-1209.
    23. Sun, Y., et al., Crystalline silver nanowires by soft solution processing. Nano letters, 2002. 2(2): p. 165-168.
    24. Webpage, W.t.R.L.s.P., templatesynthesis.
    25. Cha, H.-R., et al., Microfabrication and optical properties of highly ordered silver nanostructures. Nanoscale research letters, 2012. 7(1): p. 1.
    26. Woo, J.S., et al., Electrically robust metal nanowire network formation by in-situ interconnection with single-walled carbon nanotubes. Scientific reports, 2014. 4.
    27. Khaligh, H.H. and I.A. Goldthorpe, Failure of silver nanowire transparent electrodes under current flow. Nanoscale research letters, 2013. 8(1): p. 1-6.
    28. Compton, O.C., et al., Crumpled Graphene Nanosheets as Highly Effective Barrier Property Enhancers. Advanced Materials, 2010. 22(42): p. 4759-+.
    29. Kim, H., Y. Miura, and C.W. Macosko, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chemistry of Materials, 2010. 22(11): p. 3441-3450.
    30. Hsieh, Y.-P., et al., Complete corrosion inhibition through graphene defect passivation. ACS nano, 2013. 8(1): p. 443-448.
    31. Raman, R.S., et al., Protecting copper from electrochemical degradation by graphene coating. Carbon, 2012. 50(11): p. 4040-4045.
    32. Yu, Y.-H., et al., High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties. Polymer Chemistry, 2014. 5(2): p. 535-550.
    33. Chen, J., et al., Highly conductive and flexible paper of 1D silver-nanowire-doped graphene. ACS applied materials & interfaces, 2013. 5(4): p. 1408-1413.
    34. Valdes, L.B., Resistivity measurements on germanium for transistors. Proceedings of the IRE, 1954. 42(2): p. 420-427.
    35. De, S., et al., Size effects and the problem with percolation in nanostructured transparent conductors. Acs Nano, 2010. 4(12): p. 7064-7072.
    36. Lee, J.-Y., et al., Solution-processed metal nanowire mesh transparent electrodes. Nano letters, 2008. 8(2): p. 689-692.
    37. Van der Horst, C., et al., Synthesis and Characterization of Bismuth-Silver Nanoparticles for Electrochemical Sensor Applications. Analytical Letters, 2015. 48(8): p. 1311-1332.
    38. Batchelor‐McAuley, C., et al., Recent advances in voltammetry. ChemistryOpen, 2015. 4(3): p. 224-260.
    39. Corrosion Part 2 – Measurement of Corrosion Rates.

    無法下載圖示 校內:2021-11-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE