簡易檢索 / 詳目顯示

研究生: 吳國華
Wu, Kuo-Hua
論文名稱: 超音波霧化於燃料電池甲醇重組器製氫之研究
Hydrogen Generation in Methanol Reformer of Fuel Cell by Ultrasonic Nebulizer Feeding
指導教授: 賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 93
中文關鍵詞: 超音波燃料電池重組器
外文關鍵詞: Ultrasonic, Reformer, Fuel Cell
相關次數: 點閱:78下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 燃料電池為目前新興的發電技術,是一種不需經過燃燒反應卻能將化石燃料中化學能釋出而直接轉化成電能的嶄新發電裝置。在不同型式的燃料電池中,質子交換膜燃料電池(PEMFC)的操作溫度最低、無腐蝕性且電流密度高,因此成為近年來研究的重點。質子交換膜燃料電池所使用的燃料為氫氣與氧氣,氧氣可由大氣中直接獲得,而氫氣的來源可由碳氫化合物重組獲得;若以純氫氣直接供應,則有貯存、安全與補給等問題。
      本實驗以甲醇作為重組製氫燃料,設計製造一長420 mm,內徑44 mm之管型重組器;輔以商用觸媒G66B來進行研究。在進料方面,以超音波振盪方式將液體進料霧化成微小液滴,可得較佳之反應效率,並可省卻加熱蒸發進料所需消耗之能源與熱量;其粒徑大小約為3.2μm。
      甲醇經由重組反應後可得富含氫氣之氣體,可供給燃料電池發電使用。本實驗以蒸氣重組反應為主,針對不同進料之水對甲醇莫耳比(S/C)、觸媒床反應溫度及攜行氣體(Carrier Gas)流率來觀察重組器性能表現。經由實驗觀察,發現當S/C = 1.8時,氮氣攜行量為8 LPM、觸媒床溫度設置在350 ℃時,甲醇轉化率有最高值,約為98.678 %;而此時氫氣產率約為0.03129 mole/min。

    Fuel cell is one of the promising power technology to generate electric power. The chemical energy is transformed to electrical power without combustion. Among all types of fuel cells, the recent research is focused on the Proton Exchange Membrane Fuel Cell (PEMFC) for several advantages:the lowest operating temperature, non-corrosiveness, and high current density. The primary fuels of PEMFC are hydrogen and oxygen. Oxygen could be obtained directly from the atmosphere while hydrogen can be reformed from hydrocarbon since storage, safety and supply problem could arise with directly pure hydrogen supply.
    In this research, a channel with a 420mm length and 44mm diameter has been designed and connected to a G66B catalytic section for Hydrogen- reforming purpose. Methanol been taken to be fuels and, with utilization of ultrasonic atomizing technique, fuel drops around 3.2 in diameter could be generated for the purpose of better reaction efficiency and reduction of energy required for fuel evaporation.
    Through the reforming process, a methanol gas could be converted into a hydrogen-rich gas and therefore becomes capable of power generating. The whole research focuses on investigation of the performance of steam reforming processes under different S/C ratios and flow rates of carrier gas. It has been discovered that the optimal conversion rate occurs under a 1.8-S/C-ratio, a 8LPM-carrier gas flow rate, and a 550°C-catalyzing bed-temperature. The value’s around 98.678﹪at this point and the rate of hydrogen generation’s around 0.03129 mole/min.

    中文摘要 英文摘要 目錄 I 表目錄 IV 圖目錄 V 符號說明 VIII 第一章 緒論 1 1-1 前言 1 1-2 燃料電池的簡介 2 1-2-1 背景原理 3 1-2-2 燃料電池的種類 4 1-2-3 氫氣的來源 5 1-3 相關文獻回顧 6 1-3-1 燃料的選用 6 1-3-2 觸媒的探討 8 1-3-3 重組器的設計及實驗探討 10 1-3-4 氫氣純化 13 1-3-4 其他相關研究 14 1-4 研究動機及目的 16 第二章 甲醇重組器原理與設計 19 2-1 甲醇重組反應 19 2-2 基本原理 20 2-3 重組系統設計構想參考 22 第三章 實驗設備與步驟 26 3-1 液體進料系統 26 3-1-1 超音波振盪霧化之原理 27 3-1-2 超音波振盪霧化器之型式 28 3-2 甲醇重組反應系統 28 3-2-1重組器本體結構 28 3-2-2重組器溫控系統 30 3-2-3重組器觸媒結構 30 3-3 量測及分析系統 31 3-3-1 產出氣體流量量測系統 31 3-3-2 產出氣體分析系統 31 3-4 實驗前之準備 36 3-4-1 水對甲醇莫耳比(S/C)的調配 37 3-4-2 氣相層析儀之校正曲線 38 3-5 實驗步驟 40 3-6 甲醇轉化率的計算 42 第四章 實驗結果與討論 46 4-1 系統條件測試與分析 46 4-2 不同水對甲醇莫耳比之重組性能表現 49 4-2-1 不同水對甲醇莫耳比之產出氣體濃度比較 49 4-2-2 不同水對甲醇莫耳比之產出氣體產率比較 50 4-3 不同氮氣攜行量之重組性能表現 50 4-3-1 不同氮氣攜行量之產出氣體濃度比較 50 4-3-2 不同氮氣攜行量之產出氣體產率比較 51 4-4 甲醇轉化率的討論 51 第五章 結論與未來工作 53 5-1 結論 53 5-2 未來工作 55 參考文獻 58

    1.Stanley, W.A., “Direct Energy Conversion,” Allyn, Bacon, Inc., Boston,1982.
    2.鄭耀宗等人,“燃料電池技術進展的現況分析,” 燃料電池論文集,pp. 15-27,民國88年。
    3.台灣燃料電池資訊網,http://203.74.203.221/
    4.Prigent, M., “On board hydrogen generation for fuel cell powered electric cars,” A review of various available techniques. Rev Ins Francais Petrole, 52, pp. 349-359, 1997.
    5.Amphlett, J.C., Klassen, R.D., Mann, R.F., Peppley, B.A., “Methanol diesel oil and ethanol as liquid sources of hydrogen for PEM fuel cells,” Proceedings of 28th Intersociety Energy Conversion Engineering Conference, vol. 1, pp.1221-1226, 1993.
    6.Adamson, K.A., Pearson, P., “Hydrogen and methanol: a comparison of safety, economics, efficiencies and emissions,” Journal of Power Source, 86, pp. 548-555, 2000.
    7.Brown, L. F.,“A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles,” International Journal of Hydrogen Energy, 26, pp. 381-397, 2001.
    8.Ahmed, S., Doshi, R., Kumar, R., Krumpelt, M., “Gasoline to hydrogen –a new route for fuel cells,” Electric & Hybrid Vehicle Technology , 97, pp. 77-80, 1997.
    9.Amphlett, J.C., Mann, R.F., Peppley, B.A., “Performance and operating characteristics of methanol steam-reforming,” Proceedings of 11th World Hydrogen Energy Conference, Stuttgart, Germany, pp.1737-1743, 1996.
    10.Peppley, B.A., Amphlett, J.C., Kearns, L.M., Ronald, F.M., “Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction work,” Applied Catalysis A:General, 179, pp. 21-29, 1999.
    11.Alejo, L., Lago, R., Peña, MA., Fierro, J.L.G., “Partial Oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts,” Applied Catalysis A:General, 162, pp. 281-297, 1997.
    12.Kiyohara, C., Ishino, T., Kameyama, H., “Cu-Zn/Al2O3/Al-Plate Catalyst for a methanol reformer,” NTT Advanced Technology Corporation.
    13.Wild P.J., Verhaak M.J.F.M, “Catalyst production of hydrogen from methanol,” Catalysis Today, 60, 3-10, 2000.
    14.王森偉,“在銅鋅觸媒上以甲醇製造氫氣之動力學研究,”碩士論文,清華大學化學工程研究所,民國75年。
    15.黃大仁,“小型甲醇重組器技術開發-期末報告,”工業技術研究院能資所委託研究計畫,民國89年。
    16.宋隆裕,“燃料電池用甲醇重組器之測試研究,”能源季刊,第二十四卷 第一期,pp. 69~88,民國83年。
    17.Lin, Y.M., Rei, M.H., “Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor,” Catalysis Today, 67, pp. 77-84, 2001.
    18.Ahmed, S., Kumar, R., Krumpelt, M., “Methanol Partial Oxidation Reformer,” United States Patent, Patent Number:5,942,346, 1999.
    19.Han, J., Kim, I.S., Choi, K.S., “Purifier-integrated methanol reformer for fuel cell vehicles,” Journal of Power Source, 86, pp. 223-227, 2000.
    20.Okada, T., Gonjo Y., Matsumura M., Mitsuda K., “Development of methanol reformer for PEFC,” Mitsubishi Electric Corporation.
    21.Edwards, N., Ellis, S. R., Frost, J. C., Golunski, S. E., Keulen, A. N.J. van, Lindewald, N. G., Reinkingh, J. G., “ On-board hydrogen generation for transport applications: the HotSpot(TM) methanol processor,” Journal of Power Source, 71, pp. 123-128, 1998.
    22.Kumar, R., Ahmed, S., Krumpelt, M., “Rapid-start reformer for methanol in fuel-cell vehicles,” Electric & Hybrid Vehicle Technology , 96, pp.123-127, 1996.
    23.Han, J., Kim, I.S., Choi, K.S., “High purity hydrogen generator for on-site hydrogen production,” International Journal of Hydrogen Energy, 27, pp. 1043-1047, 2002.
    24.Utaka, T., Sekizawa, K., Eguchi, K., “CO removal by oxygen-assisted water gas shift reaction over supported Cu catalysts,” Applied Catalysis A:General, 194-195, pp. 21-26, 2000.
    25.蔡聖權,“甲醇水蒸氣重組在鈀膜反應器的數學與電腦模擬,” 碩士論文,台灣大學化學工程研究所,民國91年。
    26.Velu, S., Suzuki, K., Kapoor, M.P., Ohashi, F., Osaki, T., “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-Oxide catalysts,” Applied Catalysis A:General, 213, pp. 47-63, 2001.
    27.Huang, T.J., Wang, S.W., Appl.Catal., 24, pp. 287-297, 1986.
    28.Huang, T.J., Chren, S.L., Appl.Catal., 40, pp. 43-52,1988.
    29.Amphlett, J.C., Mann, R.F., Peppley, B.A., “On board hydrogen purification for steam reformer/PEM fuel cell vehicle power plants, ” Proceedings of the World Hydrogen Energy Conference, vol. 3, pp. 1681-1690, 1994.
    30.陳泓政,“燃料電池用之甲醇重組器氫氣產生研究,”碩士論文,成功大學航空太空工程研究所,民國91年。
    31.吳朗,“電子陶瓷-壓電,”全欣資訊圖書,pp. 265-274,民國83年。
    32.孫逸民等人,“儀器分析,”全威圖書,pp. 51-94,民國89年。
    33.朱俊彥,“攜帶式二氧化碳偵測器新技術,”台灣環保產業雙月刊,民國91年。

    下載圖示 校內:2004-08-18公開
    校外:2004-08-18公開
    QR CODE