簡易檢索 / 詳目顯示

研究生: 黃振豪
Huang, Chen-Hao
論文名稱: Sn1-xSbxS與Cu2(Co1-xZnx)SnS4奈米晶液相合成及可調控能隙研究
Solution-phase synthesis and tunable bandgap of Sn1-xSbxS and Cu2(Co1-xZnx)SnS4 nanocrystals
指導教授: 林文台
Lin, Wen-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 123
中文關鍵詞: Sn1-xSbxS奈米晶Cu2(Co1-xZnx)SnS4奈米晶單一反應系統能隙調控
外文關鍵詞: Sn1-xSbxS nanocrystals, Cu2(Co1-xZnx)SnS4 nanocrystals, one-pot system, tunable bandgap
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討160-180℃在高壓釜中合成Sn1-xSbxS(x=0.00, 0.02, 0.04, 0.06)與270℃於油胺中合成Cu2(Co1.1-xZnx)SnS4(x=0, 0.2, 0.4, 0.6, 0.8, 1.1)試料的相生成及可調控能隙之研究。SnS、Sn0.98Sb0.02S試料分別在160℃反應12小時與180℃反應24小時可得到orthorhombic SnS純相,顯示Sb的摻入提高了orthorhombic SnS相的活化能。Sb在SnS中的固溶度約5.4 at%。. SnS形貌為300-700 nm,厚度約30-40 nm的奈米板狀晶粒。Sn1-xSbxS(x= 0.02, 0.04, 0.06)試料尺寸會隨著Sb濃度增加而減小。藉由提升Sb的濃度至5.4 at%,Sb-doped SnS奈米晶之能隙可由1.30調控至1.39 eV。將Sn0.96Sb0.04S薄膜在氮氣中以200℃退火,其能隙值無變化,而當退火溫度為300和350℃,能隙值由1.35eV減小至1.33與1.31 eV,此現象可由退火造成Sb與S在試片中的蒸發來解釋。
    以溶熱法在油胺中於270℃反應24小時合成Cu2CoSnS4合金,以醋酸鈷為前軀體優於硝酸鈷與氯化鈷前軀體,其可促進純和合乎計量比的Cu2CoSnS4奈米晶生成,推論醋酸根離子可當作螯合基,平衡油胺中各陽離子的反應性。在本研究中,Cu2(Co1-xZnx)SnS4奈米晶的生長速率較Cu2CoSnS4與Cu2ZnSnS4奈米晶為慢,這可能是合成Cu2(Co1-xZnx)SnS4奈米晶時,鈷離子和鋅離子與其他陽、陰離子反應時會彼此競爭,阻礙對方進入晶格,而降低CCZTS奈米晶生長的速率。Cu2(Co1.1-xZnx)SnS4(x=0, 0.2, 0.4, 0.6, 0.8, 1.1)試料能隙值由1.21 eV分別增加為1.25、1.28、1.31、1.37、1.46 eV。此結果可能為Cu2CoSnS4與Cu2ZnSnS4價帶與導帶結構分別混合所致。本研究顯示可調控能隙之Sn1-xSbxS與Cu2(Co1-xZnx)SnS4奈米晶有應用於光伏元件的潛力。

    SUMMARY

    In the present study, phase formation and tunable bandgaps of Sn1-xSbxS (x = 0.00, 0.02, 0.04, 0.06), and Cu2(Co1.1-xZnx)SnS4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.1) samples synthesized at 160-180˚C in teflon-lined stainless steel autoclave and at 270˚C in oleylamine (OLA), respectively, were explored. The substitution solubility of Sb in SnS was about 5.4 at%. The bandgap of Sn1-xSbxS nanocrystals can be tuned from 1.30 to 1.39 eV by increasing the Sb concentration to about 5.4 at%. On annealing in N2, the bandgap of 200˚C-annealed Sn0.96Sb0.04S films remained unchanged, while that of 300- and 350˚C-annealed Sn0.96Sb0.04S films decreased from 1.35 to 1.33 and 1.31 eV, respectively. This result can be explained in terms of evaporation of Sb and S during annealing.
    On solvothermal synthesis of Cu2CoSnS4 alloys at 270˚C for 24 h in OLA, the Co(CH3COO)2 precursor was superior to CoCl2 and Co(NO3)2 precursors in enhancing the growth of pure and stoichiometric Cu2CoSnS4 nanocrystals. In the present study, the growth rate of Cu2(Co1-xZnx)SnS4 nanocrystals was less than that of Cu2CoSnS4 and Cu2ZnSnS4 nanocrystals. For Cu2(Co1.1-xZnx)SnS4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.1) samples the bandgap increased from 1.21 to 1.25, 1.28, 1.31, 1.37, and 1.46 eV, respectively. This result may be explained in terms of the hybridization of valence and conduction bands of Cu2CoSnS4 and Cu2ZnSnS4. The Sn1-xSbxS and Cu2(Co1-xZnx)SnS4 nanocrystals with tunable bandgap may be promising candidates for photovoltaic applications.

    Key words : Sn1-xSbxS nanocrystals、Cu2(Co1-xZnx)SnS4 nanocrystals、one-pot system、tunable bandgap

    INTRODUCTION

    Currently, the Cu2-II-IV-VI4 compounds such as Cu2ZnSnS4 (CZTS), and Cu2ZnSnSe4 (CZTSe), the IV-VI compounds such as SnS, and SnSe containing non-toxic and abundant elements have drawn great attention as alternatives to Cu(In,Ga)Se2 for use as the solar cell absorber layer. To maximize the conversion efficiency, the band gap of an ideal PV absorber layer should be around 1.3 eV for the single-junction cell and 1.0-1.9 eV for the two-junction cell. These requirements can be achieved by tunning the bandgaps of PV materials via adjusting the chemical compositions.
    Recently, few studies about the tunable bandgaps of SnS and CZTSe were reported. further exploration on the synthesis and characterization of cation-doped IV-VI compounds and Cu2-II-IV-VI4 compounds are still attractive. In the present study, the tunable bandgap of Sn1-xSbxS nanocrystals and Cu2(Co1-xZnx)SnS4 alloys were explored.

    MATERIALS AND METHODS

    For Sn1-xSbxS nanocrystals, a mixture of SnCl2∙2H2O, Na2S∙9H2O, and SbCl3 powders were dissolved in ethylene glycol and then stirred for 2 h. The solutions were loaded into a 40 ml teflon-lined stainless steel autoclave and then heated at 160-180˚C for 12-24 h followed by slow cooling to room temperature, respectively. The product was centrifuged and then washed with deionized water and ethanol to remove the dissoluble by-product, and finally dried at about 50℃.
    For Cu2(Co1-xZnx)SnS4 alloys, a mixture of CuCl, Co(CH3COO)2∙2H2O, Zn(CH3COO)2∙2H2O, SnCl4∙5H2O, CH4N2S powders was dissolved in OLA with magnetic stirring, and then heated at 270˚C in N2 for 24-48 h. The product was centrifuged and then washed with hexane and ethanol to remove the dissoluble by-product, and finally dried at about 50℃.
    The microstructure of samples was observed using SEM and TEM. The chemical compositions of samples were measured with SEM/EDS and TEM/EDS. The phases in the samples were analyzed using XRD and Raman spectrometer. The optical properties of samples were characterized using diffuse absorbance and reflectance UV-vis spectrometer. The valence states of the chemical elements in the samples were measured using XPS.

    RESULTS AND DISCUSSION

    Sn1-xSbxS (x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10) powders with single orthorhombic SnS (JCPD 00-039-0354) were synthesized in an autoclave at 160-180°C for 12-24 h as shown in Fig. 2, where the XRD (111) peak of Sn1-xSbxS (x = 0.02, 0.04, and 0.06) powders shifts to a higher diffraction angle with the extent increasing with the Sb concentration as compared with that of the SnS sample. Sn and Sb in the Sn1-xSbxS samples are in the oxidation state of 2+ and 3+, respectively, from XPS measurement. The substitution of Sb for Sn reduces the lattice constant of SnS because the ion radius of Sb3+, 0.076 nm, is smaller than that of Sn2+, 0.093 nm. However, no further shift in the XRD peaks of Sn1-xSbxS (x = 0.08, 0.10) powders was observed, revealing that there may have a limit in the substitution solubility of Sb in the SnS lattice. In the present study, the substitution solubility of Sb in SnS is about 5 at% which is comparable to that for the Sb-doped SnS thin films reported previously
    Sn1-xSbxS (x = 0.00, 0.02, 0.04, 0.06) films are in the range of 1.30-1.39 eV, which are obtained from their reflectance spectra by performing the Kubelka-Munk transformation
    The Cu2(Co1-xZnx)SnS4 (x=0.0, 0.2, 0.4, 0.6, 0.8, and 1.1) samples were synthesized at 270˚C for 24-48 h to obtain pure Cu2(Co1-xZnx)SnS4 phase which was characterized by the sharp Raman peaks. The Raman spectra of Cu2(Co1-xZnx)SnS4 (x=0.0, 0.2, 0.4, 0.6, 0.8, and 1.1) showing that main peaks shift from CCTS (326 cm-1) to CZTS (335 cm-1). The direct bandgaps of Cu2(Co1-xZnx)SnS4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.1) samples are 1.21, 1.25, 1.28, 1.31, 1.37, and 1.46 eV, which are obtained from their absorbance spectra, showing that the direct bandgaps increase with the Zn concentrations linearly.

    CONCLUSION

    SnS and Sn1-xSbxS (x = 0.00, 0.02, 0.04, 0.06) powders with single orthorhombic SnS phase (JCPD 00-039-0354) were synthesized in ethylene glycol at 160-180 °C for 12-24 h, respectively. The maximum substitution solubilities of Sb in SnS were about 5 at%. The bandgaps of Sn1-xSbxS nanocrystals could be tuned in the range of 1.30-1.39 eV. For the Sn0.96Sb0.04S film subjected to annealing in N2 the bandgaps of 200°C-annealed ones remained nearly unchanged, while those of 300- and 350°C-annealed ones decreased with the annealing temperature because of the evaporation of Sb and S. In the present study, the Sn1-xSbxS nanocrystals with tunable bandgap may be the potential candidates as the photovoltaic materials.
    On solvothermal synthesis of Cu2CoSnS4 alloys at 270˚C for 24 h in OLA, the Co(CH3COO)2 precursor was superior to CoCl2 and Co(NO3)2 precursors in enhancing the growth of pure and stoichiometric Cu2CoSnS4 nanocrystals. One can suggest that the acetate anion may behave as a chelating ligand, and thus balance the reactivities of various cations in the OLA solvent. In the present study, the growth rate of Cu2(Co1-xZnx)SnS4 nanocrystals was less than that of Cu2CoSnS4 and Cu2ZnSnS4 nanocrystals. It seems that during synthesis of Cu2(Co1-xZnx)SnS4 nanocrystals a competition between Co and Zn cations for reaction with other cations and anion (S2-) may hinder each other from incorporation into the lattice, and thus delay their growth rate. For Cu2(Co1.1-xZnx)SnS4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.1) samples the bandgap increased from 1.21 to 1.25, 1.28, 1.31, 1.37, and 1.46 eV, respectively. This result may be explained in terms of the hybridization of valence and conduction bands of Cu2CoSnS4 and Cu2ZnSnS4. The Sn1-xSbxS and Cu2(Co1-xZnx)SnS4 nanocrystals with tunable bandgap may be promising candidates for photovoltaic applications.

    摘要 I Abstract Ⅲ 致謝 Ⅶ 目錄 Ⅷ 圖目錄 Ⅹ 第一章 引言 1 第二章 光電基礎理論與文獻回顧 4 2.1 基本光電原理 4 2.1.1 光傳導效應(Photoconductive effect) 4 2.1.2 光伏效應(Photovoltaic effect) 4 2.2 太陽能材料介紹 5 2.2.1 太陽能材料物理特性需求 5 2.2.2 太陽能材料分類 6 2.3 可調控能隙材料 9 2.3.1 可調控能隙材料文獻回顧 9 2.3.2 SnS奈米晶合成及特性 11 2.3.3 藉由控制尺寸調控SnS能隙 11 2.3.4 藉由元素摻雜SnS調控性質及能隙 12 2.3.5 I-II-IV-VI族材料相關文獻 14 2.3.6 Burstein-Moss效應相關文獻 16 2.3.7 應力效應(stress effect)相關文獻 17 2.4研究動機 18 第三章實驗步驟與方法 20 3.1水熱法在高壓釜(autoclave)合成Sn1-xSbxS粉末 20 3.2 濕式化學法在氮氣中合成Cu2(Co1-xZnx)SnS4奈米晶 21 3.3 材料特性分析 22 3.3.1 X光繞射儀(X-ray Diffractometer) 22 3.3.2 掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM) 23 3.3.3 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 25 3.3.4 X光能量散佈分析儀(Energy Dispersive X-ray Spectrometer, EDS) 26 3.3.5 紫外/可見光(UV-vis)光譜儀 27 3.3.6 拉曼光譜儀(Raman Spectrometer) 29 3.3.7 化學分析電子光譜儀(Electron Spectroscopy for Chemical Analysis,ESCA) 30 第四章結果與討論 32 4.1 SnS與Sn1-xSbxS奈米晶 32 4.1.1水熱法在高壓釜(autoclave)製備 SnS及Sn1-xSbxS奈米晶 32 4.1.2 SnS及Sn1-xSbxS奈米晶之微結構 34 4.1.3 SnS及Sn1-xSbxS奈米晶之光學能隙 35 4.1.4退火對Sn0.96Sb0.04S光學能隙的影響 36 4.2 Cu2(Co1-xZnx)SnS4 (CCZTS) 38 4.2.1不同前驅體合成Cu2CoSnS4 (CCTS)奈米晶的影響 38 4.2.2濕式化學法在氮氣中合成Cu2(Co1-xZnx)SnS4 (CCZTS)奈米晶 39 4.2.3 Cu2(Co1-xZnx)SnS4 (CCZTS)奈米晶之微結構 41 4.2.4 Cu2(Co1-xZnx)SnS4奈米晶的光學能隙 41 第五章 結論 43 5.1 水熱法在高壓釜中合成Sn1-xSbxS奈米晶 43 5.2 濕式化學法在氮氣中合成CCZTS奈米晶 44 參考文獻 45 附錄 117 JCPDS Cards No. 00-039-0354 (SnS) 117 JCPDS Cards No. 01-077-3356 (SnS) 118 JCPDS Cards No. 00-026-0513 (Cu2CoSnS4) 119 JCPDS Cards No. 01-075-4122 (Cu2ZnSnS4) 120 JCPDS Cards No. 01-089-4714 (Cu2SnS3) 122 JCPDS Cards No. 00-033-0501 (Cu3SnS4) 123 圖 1全球太陽能光電模組產能 53 圖 2 p-n junction 示意圖 54 圖 3外接導線示意圖 55 圖 4 SnS orthorhombic結構 55 圖 5 Cu2CoSnS4 tetragonal結構 56 圖 6能隙大小受到摻雜元素之影響 56 圖 7水熱法在高壓釜中合成Sb摻雜之Sn1-xSbxS奈米晶之實驗流程圖 57 圖 8高壓釜示意圖 58 圖 9溶熱法在氮氣中合成Zn摻雜之Cu2Co1-xZnxSnS4奈米晶之實驗流程圖 59 圖 10迴流系統架設示意圖 60 圖 11布拉格定律示意圖 60 圖 12 SnS,反應溫度160℃持溫12hrs之XRD 61 圖 13 SnS,反應溫度180℃持溫12hrs之XRD 61 圖 14 Sn0.98Sb0.02S,反應溫度160℃持溫24hrs之XRD 62 圖 15 Sn0.98Sb0.02S,反應溫度170℃持溫24hrs之XRD 62 圖 16 Sn0.98Sb0.02S,反應溫度180℃持溫24hrs之XRD 63 圖 17 Sn0.96Sb0.04S,反應溫度180℃持溫24hrs之XRD 63 圖 18 Sn0.94Sb0.06S,反應溫度180℃持溫24hrs之XRD 64 圖 19 180℃之SnS、Sn1-xSbxS XRD圖(a)20~80度 (b)25~35度 (c)Si基板校正 65 圖 20水熱法合成Sn0.96Sb0.04S奈米晶之ESCA分析 66 圖 21 Sn之各離子態Binding Energy束縛能 67 圖 22配位數6之各陽離子半徑 67 圖 23 SnS 元素平均值 68 圖 24 Sn0.98Sb0.02S 元素平均值 68 圖 25 Sn0.96Sb0.04S 元素平均值 69 圖 26 Sn0.94Sb0.06S 元素平均值 69 圖 27 Sn1-xSbxS 之(111面)晶面間距比較 70 圖 28 160℃x12hrs之SEM圖(a)(b) 71 圖 29 180℃x12hrs之SEM圖(a)(b) 72 圖 30 Sn0.98Sb0.02S,180℃x24hrs之SEM圖(a)(b) 73 圖 31 Sn0.96Sb0.04S,180℃x24hrs之SEM圖(a)(b) 74 圖 32 Sn0.96Sb0.06S,180℃x24hrs之SEM圖(a)(b) 75 圖 33 SnS 板狀結晶(a)繞射分析位置(b)繞射圖分析 76 圖 34 Sn0.98Sb0.02S結晶(a)繞射分析位置(b)繞射圖分析(c)板狀Linescan影像(d)顆粒狀Linescan影像(e)HR影像(f)HR-FFT影像 77 圖 35 Sn0.94Sb0.06S顆粒狀結晶(a)多晶繞射分析位置(b)多晶繞射圖分析 81 圖 36 Sn1-xSbxS反射式直接能隙疊圖 82 圖 37 Sn1-xSbxS Reflectance V.S.波長(nm)圖 錯誤! 尚未定義書籤。 圖 38 Sn1-xSbxS 吸收光譜圖 (a)x=0.00(b)x=0.02(c)x=0.04(d)x=0.06 83 圖 39 Sn1-xSbxS銻摻雜比v.s.直接能隙值圖 84 圖 40 SnS薄膜SEM圖 85 圖 41 Sn0.96Sb0.04S(a)未退火(b)200℃退火(c)300℃退火(d)350℃退火 薄膜SEM圖 85 圖 42 Sn0.96Sb0.04S膜厚SEM圖 87 圖 43 Sn0.96Sb0.04S於不同退火溫度直接能隙疊圖 88 圖 44 Sn0.96Sb0.04S於不同退火溫度之 EDS分析 88 圖 45 Sn0.96Sb0.04S 400℃退火薄膜SEM圖 89 圖 46 Sn0.96Sb0.04S Reflectance V.S.波長(nm) 圖 89 圖 47不同前軀物,莫耳配比Cu:Co:Sn:S=2:1:1:4(a)硝酸鈷(b)氯化鈷(c)醋酸鈷 XRD (d)三者疊圖 90 圖 48不同前軀物,莫耳配比Cu:Co:Sn:S=2:1:1:4(a)硝酸鈷(b)氯化鈷(c)醋酸鈷Raman圖 92 圖 49不同前軀物,莫耳配比Cu:Co:Sn:S=2:1:1:4(a)硝酸鈷(b)氯化鈷 93 圖 50 Cu2Co1.1-xZnxSnS4,反應溫度270℃反應時間24hrs XRD圖 94 圖 51 Cu2Co1.1-xZnxSnS4,反應溫度270℃反應時間24hrs Rama圖 94 圖 52 Cu2Co1.1-xZnxSnS4反應溫度270℃反應時間24hrs (a)x=0.2(b)x=0.4(c)x=0.6 (d)x=0.8 Raman圖 95 圖 53 Cu2Co1.1-xZnxSnS4,反應溫度270℃反應時間48hrs Raman圖 97 圖 54 Cu2Co1.1-xZnxSnS4,反應溫度270℃反應時間48hr (a)20-80度(b)25-35度(c)SI基板 97 圖 55 Cu2Co0.7Zn0.4SnS4奈米晶之ESCA分析 (a)全區段示意圖 99 圖 56 Cu2Co1.1-xZnxSnS4,反應溫度270℃之EDS分析 100 圖 57 Cu2Co1.1-xZnxSnS4 晶格常數(a) a (b) c V.S. Zn/(Zn+Co)圖 101 圖 58 Cu2Co1.1SnS4,270℃x24hrs之SEM圖(a)(b) 102 圖 59 Cu2Zn1.1SnS4,270℃x24hrs之SEM圖(a)(b) 103 圖 60 Cu2Co1.1SnS4單晶(a)繞射影像圖(b)繞射分析圖 104 圖 61 Cu2Co1.1SnS4多晶(a)繞射影像圖(b)繞射分析圖 105 圖 62 Cu2Zn1.1SnS4多晶(a)繞射影像圖(b)繞射分析圖 106 圖 63 Cu2Co0.9Zn0.2SnS4,270℃x48hrs之SEM圖(a)(b) 107 圖 64 Cu2Co0.7Zn0.4SnS4,270℃x48hrs之SEM圖(a)(b) 108 圖 65 Cu2Co0.5Zn0.6SnS4,270℃x48hrs之SEM圖(a)(b) 109 圖 66 Cu2Co0.3Zn0.8SnS4,270℃x48hrs之SEM圖(a)(b) 110 圖67 Cu2Co0.7Zn0.4SnS4單晶(a)繞射影像圖(b)繞射分析圖(c)EDS分析(d)Linescan影像圖 111 圖 68 Cu2Co0.7Zn0.4SnS4多晶(a)繞射影像圖(b)繞射分析圖 113 圖 69 Cu2Co1.1-xZnxSnS4(a)x=0 (b)x=0.2 (c)x=0.4(d)x=0.6 (e)x=0.8 (f)x=1.1直接能隙疊圖 114 圖 70 Cu2Co1.1-xZnxSnS4吸收光譜圖(a)x=0(b)x=0.2 (c)x=0.4(d)x=0.6 (e)x=0.8 (f)x =1.1 115 圖 71 Cu2Co1.1-xZnxSnS4 Absorption coefficient V.S.波長(nm) 116 圖 72 Cu2Co1.1-xZnxSnS4 銻摻雜比v.s.直接能隙值圖 116

    參考文獻

    [1] R.W. Zhang, M.X. Wang, X. Yang, Y. Wang, "Preliminary Estimation of Emission of HFCs, PFCs and SF6 from China in 1995," Environ. Res. 5 ( 2) pp. 175– 179, 2000.
    [2] 莊嘉琛, 太陽能工程--太陽能電池篇 台北:全華圖書股份有限公司, 2008.
    [3] S. E. Shaheen, D. S. Ginley, and G. E. Jabbour, "Organic-based photovoltaics. toward low-cost power generation," MRS Bul., vol. 30, pp. 10-19, 2005.
    [4] D. R. E. Adams. W. G, "The Action of Light on Selenium," The Journal of the Society of Telegraph Engineers, vol. 167,pp. 313-349, 1877.
    [5] C. T. Dervos, P. D. Skafidas, J. A. Mergos, and P. Vassiliou, "p-n junction photocurrent modelling evaluation under optical and electrical excitation," Sensors, vol. 4, pp. 58-70, 2004.
    [6] R. Tena-Zaera, M. A. Ryan, A. Katty, G. Hodes, S. Bastide, and C. Levy-Clement, "Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell," Cr. Chim., vol. 9, pp. 717-729, 2006.
    [7] H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, and Y. Zhang, "Tunable band gap Cu2ZnSnS4xSe4(1-x) nanocrystals: experimental and first-principles calculations," Cryst. Eng. Comm., vol. 13, pp. 2222-2226, 2011.
    [8] A. Devos, "Detailed balance limit of the efficiency of tandem solar-cells," J Phys. D. Appl. Phys., vol. 13, pp. 839-846, 1980.
    [9] A. Kay,M. Gratzel, " Artificial Photosynthesis. 1. Photosensitization of Ti02 Solar Cells with Chlorophyll Derivatives and Related Natural Porphyrins," The Journal of Physical Chemistry, Vol. 97, No. 23, 1993.
    [10] J. N. Clifford, E. Palomares, K. Nazeeruddin, R. Thampi, M. Gratzel, and J. R. Durrant, "Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films," J. am. Chem. Soc., vol. 126, pp. 5670-5671, 2004.
    [11] V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, O. A. Khvostikova, V. D. Rumyantsev, N. A. Sadchikov, et al., "Concentrator PV modules and solar cells for TPV systems," Sol. Energ. Mat. Sol. C, vol. 84, pp. 3-17, 2004.
    [12] M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, "Multi-junction III-V solar cells: current status and future potential," Sol. Energy, vol. 79, pp. 78-85, 2005.
    [13] N. V. Yastrebova, "High-efficiency multi-junction solar cells: Current status and future potential," 2007.
    [14] T. K. Todorov, K. B. Reuter and D. B. Mitzi, " High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber," Advanced Energy Materials, vol. 22, pp. E156-E159, 2010.
    [15] Q. Guo, G. M. Ford, W. C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, and R. Agrawal, "Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals," J. am. Chem. Soc., vol. 132, pp. 17384-17386, 2010.
    [16] H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, "Development of CZTS-based thin film solar cells," Thin Solid Films, vol. 517, pp. 2455-2460, 2009.
    [17] K. Wang, et al., "Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells," Appl. Phys. Lett., vol. 98, pp. 051912, 2011.
    [18] J. B. Li, et al., "Investigating the Role of Grain Boundaries in CZTS and CZTSSe Thin Film Solar Cells with Scanning Probe Microscopy," Adv. Mater., vol. 24, pp. 720-723, 2012.
    [19] S. Li, D. Pan, " Cu2SnSe3 and alloyed (ZnSe)x(Cu2SnSe3)1x," nanocrystals with a metastablezincblende and wurtzite structure," J. Cryst. Growth, 358, pp. 38–42, 2012.
    [20] C. Yang, B. Zhou,S. Miao, C. Yang, B. Cai, W. Zhang, X. Xu, "Cu2Ge(S3−xSex) Colloidal Nanocrystals: Synthesis, Characterization,and Composition-Dependent Band Gap Engineering," J. Am. Chem. Soc., 135, pp. 5958−5961, 2013.
    [21] T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, "Complete composition tunability of InGaN nanowires using a combinatorial approach," Nat Mater., vol. 6, pp. 951-956, 2007.
    [22] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, et al., "Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics," J. am. Chem. Soc., vol. 130, pp. 16770-16777, 2008.
    [23] J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, "Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles," Chem. Mater., vol. 20, pp. 6906-6910, 2008.
    [24] D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, "Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell," Progress in Photovoltaics: Research and Applications, vol. 20, pp. 6-11, 2012.
    [25] I. Lefebvre, M. A. Szymanski, J. Olivier-Fourcade, and J. C. Jumas, "Electronic structure of tin monochalcogenides from SnO to SnTe," Phys. Rev. B, vol. 58, pp. 1896-1906, 1998.
    [26] M. M. Haluk ŞAFAK, Ő. Faruk YŰKSEL, "Dispersion Analysis of SnS and SnSe," Turkish Journal of Physics, vol. 26, pp. 341-347, 2002.
    [27] H. Peng, L. Jiang, J. Huang, G. Li, " Synthesis of morphologically controlled tin sulfide nanostructures" J. Nanopart. Res., vol. 9, pp. 1163-1166, 2007.
    [28] M. T. S Nair, P. K. Nail, " Simplified chemical deposition technique for good quality SnS thin films," Semicond. Sci., Technol, pp.132-134, 1991.
    [29] M. Parenteau,;C. Carlone, "Influence of temperature and pressure on the electronic transitions in SnS and SnSe semiconductors," Phys. Rev. B, 41, pp. 5227–5234, 1990.
    [30] G. H. Yue, D. L. Peng , P. X. Yan , L. S. Wang ,W. Wang , X. H. Luoa, " Structure and optical properties of SnS thin film prepared by pulse electrodeposition," J. Alloy. Compd., 468, pp. 254–257, 2009.
    [31] M. Salavati-Niasari, D. ghanbaria, F. Davar, " Shape selective hydrothermal synthesis of tin sulfide nanoflowers based on nanosheets in the presence of thioglycolic acid," J. Alloy. Compd., 492, pp. 570–575, 2010.
    [32] W. Cai, J. Hu, Y. Zhao, H. Yang, J. Wang, W. Xiang , "Synthesis and characterization of nanoplate-based SnS microflowers via a simple solvothermal process with biomolecule assistance," Adv. Powder. Technol. 23, 850–854, 2012.
    [33] Z. Deng, D. Han, Y. Liu,’’ Colloidal synthesis of metastable zinc-blende IV–VI SnS nanocrystals with tunable sizes’’ Nanoscale, 3, pp. 4346–4351, 2011.
    [34] Y. Xu, N. Al-Salim, C.W. Bumby,R.D. Tilley, "Synthesis of SnS Quantum Dots," J. Am. Chem. Soc., 131, pp. 15990–15991, 2009.
    [35] G. H. Yue, L. S. Wang, X. Wang, "Characterization and Optical Properties of the Single Crystalline SnS Nanowire Arrays," Nanoscale Res. Lett., pp. 359–363, 2009.
    [36] S. Sohila, M. Rajalakshmi, Chanchal Ghosh, A.K. Arora, C. Muthamizhchelvana, "Optical and Raman scattering studies on SnS nanoparticles," J. Alloy. Compd. 509, pp. 5843–5847, 2011.
    [37] P. Sinsermsuksakul, R. Chakraborty, S. B. Kim, Steven M. Heald, T. Buonassisi, R. G. Gordon, "Antimony-Doped Tin(II) Sulfide Thin Films," Chem. Mater., 24, pp. 4556−4562, 2012.
    [38] H. Wei, Y. J. Su, S. Z. Chen, Y. Lin, Z. Yang, X. S. Chen, et al., "Novel SnSxSe1-x nanocrystals with tunable band gap: experimental and first-principles calculations," J. Mater. Chem., vol. 21, pp. 12605-12608, 2011.
    [39] T. Mahalingam, V. Dhanasekaran, G. Ravi, R. Chandramohan, A. Kathalingam, and J.-K. Rhee, "Role of Deposition Potential on the Optical Properties of SnSSe Thin Films," ECS Transactions, vol. 35, pp. 1-10, 2011.
    [40] A. Akkari, M. Reghima, C. Guasch, and N. Kamoun-Turki, "Effect of copper doping on physical properties of nanocrystallized SnS zinc blend thin films grown by chemical bath deposition", J. Mater. Sci., vol. 47, pp. 1365-1371, 2012
    [41] K. Santhosh Kumar , C. Manoharan, S. Dhanapandian, A. Gowri Manohari, "Effect of Sb dopant on the structural, optical and electrical properties of SnS thin films by spray pyrolysis technique," Spectrochim. Acta. A, 115, pp. 840–844, 2013.
    [42] A. Gowri Manohari, S. Dhanapandian, C. Manoharan, K. Santhosh Kumar, and T. Mahalingam,, " Effect of doping concentration on the properties of bismuth doped tin sulfide thin films prepared by spray pyrolysis," Mat. Sci. Semicon. Proc., vol. 17, pp.138–142, 2014.
    [43] X. Zhang, N. Bao, B. Lin and A. Gupta, "Colloidal synthesis of wurtzite Cu2CoSnS4 nanocrystals and the photoresponse of spraydeposited thin films," Nanotechnology, vol. 24, pp.8, 2013.
    [44] E. Parthé, K. Yvon, and R. H. Deitch, "The crystal structure of Cu2CdGeS4 and other quaternary normal tetrahedral structure compounds," Acta Crystallogr. B, vol. 25, pp. 1164-1174, 1969.
    [45] D. M. Schleich and A. Wold, "Optical and electrical properties of quarternary chalcogenides," Mater. Res. Bull., vol. 12, pp. 111-114, 1977.
    [46] W. Schäfer and R. Nitsche, "Tetrahedral quaternary chalcogenides of the type Cu2 II IV S4(Se4)," Mater. Res. Bull., vol. 9, pp. 645-654, 1974.
    [47] T. M. Friedlmeier, H. Dittrich, and H. W. Schock, "Growth and characterization of Cu2ZnSnS4 and Cu2ZnSnSe4 thin films for photovoltaic applications," The 11th Conference on Ternary and Multinary Compounds, ICTMC-11, pp. 345-348, 1997.
    [48] L. Guen, W. S. Glaunsinger, and A. Wold, "Physical properties of the quarternary chalcogenides Cu2IBIICIVX4 (BII = Zn, Mn, Fe, Co; CIV = Si, Ge, Sn; X = S, Se)," Mater. Res. Bull., vol. 14, pp. 463-467, 1979.
    [49] L. Guen, W. S. Glaunsinger, "Electrical, magnetic, and EPR studies of the quaternary chalcogenides Cu2AIIBIVX4 prepared by iodine transport," J. Solid State Chem., vol. 35, pp. 10-21, 1980.
    [50] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, et al., "New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%," Prog. Photovoltaics, vol. 19, pp. 894-897, 2011.
    [51] B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, "Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber," Prog. Photovoltaics, vol. 21, pp. 72-76, 2013.
    [52] I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, et al., "Co-evaporated Cu2ZnSnSe4 films and devices," Sol. Energ. Mat. Sol. C, vol. 101, pp. 154-159, 2012.
    [53] G. M. Ford, Q. Guo, R. Agrawal, and H. W. Hillhouse, "Earth Abundant Element Cu2Zn(Sn1-xGex)S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication," Chem. Mater., vol. 23, pp. 2626-2629, 2011.
    [54] Y. Cui, R. Deng, G. Wang, D. Pan, "A general strategy for synthesis of quaternary semiconductor Cu2MSnS4," J. Mater. Chem., 22, pp. 23136–23140, 2012.
    [55] C. Huang, Y. Chan, F. Liu, D. Tang, J. Yang, Y. Lai, J. Li, Y. Liu, "Synthesis and characterization of multicomponent Cu2(FexZn1_x)SnS4 nanocrystals with tunable band gap and structure," J. Mater. Chem. A, 1, pp. 5402–5407, 2013.
    [56] A. Kompany, H. A. R. Aliabad, S. M. Hosseini, and J. Baedi, "Effect of substituted IIIB transition metals on electronic properties of indium oxide by first-principles calculations," Phys. Status Solidi. B, vol. 244, pp. 619-628, 2007.
    [57] I. Hamberg and C. G. Granqvist, "Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows," Jpn. J. Appl. Phys., vol. 60, pp. R123-R160, 1986.
    [58] H. W. Lee, S. P. Lau, Y. G. Wang, K. Y. Tse, H. H. Hng, and B. K. Tay, "Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique," J. Cryst. Growth, vol. 268, pp. 596-601, 2004.
    [59] E. Burstein, "Anomalous optical absorption limit in InSb," Phys. Rev., vol. 93, pp. 632-633, 1954.
    [60] T. S. Moss, "The interpretation of the properties of indium antimonide," P. Phys. Soc. Lond. B, vol. 67, pp. 775-782, 1954.
    [61] I. Hamberg, C. G. Granqvist, K. F. Berggren, B. E. Sernelius, and L. Engstrom, "Band-gap widening in heavily Sn-doped In2o3," Phys. Rev. B, vol. 30, pp. 3240-3249, 1984.
    [62] Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.C. Luan, and L. C. Kimerling, "Strain-induced band gap shrinkage in Ge grown on Si substrate, " Appl. Phys. Lett., vol. 82, pp. 2044, 2003.
    [63] B. C. Mohanty, Y. H. Jo, D. H.Yeon, I. J. Choi, and Y. S. Cho, "Stress-induced anomalous shift of optical band gap in ZnO:Al thin films, " Appl. Phys. Lett., vol. 95, pp. 062103, 2009.
    [64] T. P. Rao, M. C. S. Kumar, S. A. Angayarkanni, amd M. Ashok, "Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis," J. Alloy. Compd., vol. 485, pp. 413-7, 2009.
    [65] M. A. Franzman, C. W. Schlenker, M. E. Thompson, and R. L. Brutchey, "Solution-Phase Synthesis of SnSe Nanocrystals for Use in Solar Cells," J. Am. Chem. Soc., vol. 132, pp. 4060, 2010.
    [66] V. Sholin, A. J. Breeze, I. E. Anderson, Y. Sahoo, D. Reddy, and S. A. Carter, "All-inorganic CdSe/PbSe nanoparticle solar cells," Sol. Energ. Mat. Sol. C, vol. 92, pp. 1706-1711, 2008.
    [67] E. Barrios-Salgado, M. T. S. Nair, P. K. Nair, and R. A. Zingaro, "Chemically deposited thin films of PbSe as an absorber component in solar cell structures," Thin Solid Films, vol. 519, pp. 7432-7437, 2011.
    [68] M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, "Determining the Internal Quantum Efficiency of PbSe Nanocrystal Solar Cells with the Aid of an Optical Model," Nano Letters, vol. 8, pp. 3904-3910, 2008.
    [69] S. Kitada, E. Kikuchi, A. Ohno, S. Aramaki, and S. Maenosono, "Effect of diamine treatment on the conversion efficiency of PbSe colloidal quantum dot solar cells," Solid. State Commun., vol. 149, pp. 1853-1855, 2009.
    [70] X. F. Wang, W. Z. Lu, Z. K. Luo, and F. Wang, "Microwave Assisted Preparation and Characterization of Monodispersed PbSe Nanoparticles in Solar Cell," Rare. Metal. Mat. Eng., vol. 39, pp. 103-106, 2010.
    [71] J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. F. Sung, et al., "PbSe Nanocrystal Excitonic Solar Cells," Nano Letters, vol. 9, pp. 3749-3755, 2009.
    [72] P. K. Nair, E. Barrios-Salgado, J. Capistran, M. L. Ramon, M. T. S. Nair, and R. A. Zingaro, "PbSe Thin Films in All-Chemically Deposited Solar Cells," J. Electrochem. Soc., vol. 157, pp. D528-D537, 2010.
    [73] F. W. Wise, "Lead salt quantum dots: The limit of strong quantum confinement," Accounts. Chem. Res., vol. 33, pp. 773-780, 2000.
    [74] 汪建民等人, "材料分析," 中國材料科學學會, 1998.
    [75] R. L. W. a. R. P. Ley, "Optical Properties of Indium Oxide," Jpn. J. Appl. Phys., vol. 37,pp. 1-466, 1966.
    [76] Y. S. Liu, W. Q. Luo, R. F. Li, G. K. Liu, M. R. Antonio, and X. Y. Chen, "Optical spectroscopy of Eu3+ doped ZnO nanocrystals," J. Phys. Chem. C, vol. 112, pp. 686-694, 2008.
    [77] W. N. Delgass, G. L. Haller, R. Kellerman, and J. H. Lunsford, "Spectroscopy in heterogeneous catalysis," ACADEIC PRESS INC, New York, pp. 86-129, 1979.
    [78] A. Hagfeldtt, M. Gratzel, "Light-Induced Redox Reactions in Nanocrystalline Systems," J. Cryst. Growth, vol. 268, pp. 596-601, 2004.
    [79] C. V. Raman, "A change of wave-length in light scattering," Nature, vol. 121, pp. 619, 1928.
    [80] J. C. V. a. I. S. Gilmore, "Surface analysis: the principal techniques," Wiley Online Library, 2009.
    [81] Z. Deng, D. Han, Y. Liu, " Colloidal synthesis of metastable zinc-blende IV–VI SnS nanocrystals with tunable sizes," Nanoscale, 3, pp. 4346–4351,2011.
    [82] A. Ettema and C. Haas, "An x-ray photoemission spectroscopy study of interlayer charge-transfer in some misfit layer compounds," J. Phys-Condens. Mat, vol. 5, pp. 3817-3826, 1993.
    [83] J. F. Moulder, P. E. Sobol, K. D. Bomben, "Handbook of X Ray Photoelectron Spectroscopy," Perkin-Elmer Corp, 1992.
    [84] V. P. Zakaznova-Herzog, S. L. Harmer, H. W. Nesbitt, G. M. Bancroft, R. Flemming, and A. R. Pratt, "High resolution XPS study of the large-band-gap semiconductor stibnite (Sb2S3): Structural contributions and surface reconstruction," Surf. Sci., vol. 600, pp. 348-356, 2006.
    [85] L.H. Ahrens, "The use of ionization potentials Part 1. Ionic radii of the elements," Geochim. Cosmochim. Ac., vol. 2, pp. 155-169, 1952.
    [86] M. Ristov, Gj. Sinadinovski, I. Grozdanov, M. Mitreski, "Chemical deposition of TIN(II) sulphide thin films," Thin Solid Films, vol. 173, pp. 53–58, 1989.
    [87] P. Pramanik, P.K. Basu, S. Biswas, "Preparation and characterization of chemically deposited tin (II)sulphide thin films," Thin Solid Films, vol. 150, pp. 269–276, 1987.
    [88] W. T. Lin, C. Y. Ho, Y. M. Wang, K. H. Wu, and W. Y. Chou, "Tunable growth of (GaxIn1-x)2O3 nanowires by water vapor "J. Phys. Chem. Solids.," vol. 73, pp. 948-952, 2012.
    [89] V. I. Vasyltsiv, Y. I. Rym, and Y. M. Zakharko, "Optical Absorption and Photoconductivity at theBand Edge of β-Ga2-xInxO3", Physical Status Solidi (b), vol. 195, pp. 653, 1996.
    [90] A. Kudo and I. Mikami, "Photocatalytic activities and photophysical properties of Ga2-xInxO3 solid solution", Journal of Chemistry Society, vol. 94, pp. 2929-2932, 1998.
    [91] L. Binet, G. Gauthier, C. Vigreux, and D. Gourier, "Electron magnetic resonance and optical properties of Ga2-2xIn2xO3 solid solutions", J. Phys. Chem. Solids, vol. 60, pp. 1755-1762, 1999.
    [92] I. Lj. Validžić, N. D. Abazović, M. Mitrić, "Growth of Sb2S3 nanowires synthesized by colloidal process and self-assembly of amorphous spherical Sb2S3 nanoparticles in wires formation," Met. Mater. Int., vol. 18, pp. 989-995, 2012.
    [93] J. Y. Chane-Ching, A. Gillorin, O. Zaberca, A. Balocchib¸ X. Marieb, "Highly-crystallizes quaternary chacopyrite nanocrystals via a high-temperature dissolution-reprecipitation route," Chem.Commun., vol. 47. pp. 5229-5231,2011.
    [94] P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, Phys. Status Solidi, " CuxSnSx+1 (x = 2, 3) thin films grown by sulfurization of metallic precursors deposited by dc magnetron sputtering," Phys. Status Solidi. C 7, No. 3–4 2010
    [95] M. H Chiang, Y. S Fu, T. F Guo, H. L Liu, W. T Lin, "Effects of Zn precursors on solvothermal synthesis of Cu2ZnSnSe4 nanocrystals," Mater. Lett. 83, pp. 192-194, 2012
    [96] C. Zou, L. Zhang, D. Lin, Y. Yang, Q. Li, X. Xu, X. Chen, S. Huang, " Facile synthesis of Cu2ZnSnS4 nanocrystals," Cryst. Eng. Comm., 13, pp. 3310–3313, 2011.
    [97] N. Davison, W. R. McWhinnie, " X-ray Photoelectron Spectroscopic Study of Cobalt(II) and Nickel(II) Sorbedon Hectorite and Montmorillonite," Clay. Clay. Miner., Vol. 39, No. 1, pp. 22-27, 1991.
    [98] R. D. Shannon, " Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides,” Acta. Cryst.. A32, pp. 751, 1976.

    下載圖示 校內:2015-08-04公開
    校外:2015-08-04公開
    QR CODE