| 研究生: |
黃棨煒 Huang, Chi-Wei |
|---|---|
| 論文名稱: |
探討具氧化還原活性之金屬有機骨架薄膜厚度於電化學感測過氧化氫及儲能之效應 Tuning the thin-film thickness of redox-active metal−organic frameworks for electrochemical H2O2 detection and energy storage |
| 指導教授: |
龔仲偉
Kung, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 以鋯為基底的金屬有機骨架 、氧化還原躍遷 、電化學感測過氧化氫 、電化學儲能 、薄膜厚度 |
| 外文關鍵詞: | Zirconium-based MOF, redox hopping, electrochemical H2O2 sensing, electrochemical energy storage, thin-film thickness |
| 相關次數: | 點閱:74 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬有機骨架(Metal−organic frameworks, MOFs)是一系列由金屬節點和有機連接器組成的奈米孔洞材料,其高比表面積與規律孔洞的特性能夠增加單位體積的電化學活性位點,進而提升電化學表現。然而大部分MOF缺乏水穩定性且幾乎是電的絕緣體,限制了MOF在水溶液中的電化學應用,透過安裝具氧化還原活性金屬離子在擁有水穩定性的MOF中,使其能應用於水相電化學。
因此,在本研究中,使用溶劑熱沉積法安裝具氧化還原活性鈷位點在以鋯為基底的金屬有機骨架-MOF-808,分散在MOF骨架中的鈷活性位點能以氧化還原躍遷的形式在骨架內傳遞電荷,藉此提升電化學表現並進行電化學感測過氧化氫,此外,以鈷為基底的材料也常被應用於電化學儲能,藉由滴落塗佈法最佳化工作電極上的薄膜厚度,得到最佳的儲能表現。分別對電化學感測過氧化氫以及儲能進行薄膜厚度的最佳化,結果顯示薄膜過厚不利於感測,層數過低不適合用於儲能。
In this thesis, a water-stable zirconium-based metal−organic frameworks (MOF), MOF-808, is utilized to immobilize the spatially separated redox-active cobalt sites by using a self-limiting solvothermal deposition in MOFs (SIM) technique in order to render the electronic transport during the electrochemical reactions through redox hopping. The redox-active cobalt sites installed within the Zr-MOF can not only facilitate charge transport in the framework, but also act as the active sites for the electrochemical H2O2 sensors and the active material for electrochemical energy storage in aqueous electrolytes. The cobalt-decorated MOF-808 (Co-MOF-808) thin films with various thicknesses were then fabricated, and the effects of thin-film thickness on both the performances in electrochemical sensors and energy storage are investigated. The high thin-film thickness with increased redox-active cobalt sites is more appropriate for electrochemical energy storage, but it may hinder the diffusion of the analyte, making it unsuitable for electrochemical sensing. The findings here suggest that the thin-film thickness affects significantly for achieving desired performances in certain electrochemical applications.
[1] M.L. Shi, F.C. Anson, Rapid Oxidation of Ru(NH3)63+ by Os(Bpy)33+ within Nafion Coatings on Electrodes. Langmuir, 12, 2068-2075, 1996.
[2] P. Bertoncello, I. Ciani, F. Li, P.R. Unwin, Measurement of Apparent Diffusion Coefficients within Ultrathin Nafion Langmuir-Schaefer Films: Comparison of a Novel Scanning Electrochemical Microscopy Approach with Cyclic Voltammetry. Langmuir, 22, 10380-10388, 2006.
[3] Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. J. Phys. Chem. Lett., 3, 399-404, 2012.
[4] N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chem. Soc. Rev., 46, 337-365, 2017.
[5] L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, Nickel-Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. J. Am. Chem. Soc., 136, 6744-6753, 2014.
[6] C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. J. Am. Chem. Soc., 137, 4347-4357, 2015.
[7] C.C.L. McCrory, S.H. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc., 135, 16977-16987, 2013.
[8] L. Han, S.J. Dong, E.K. Wang, Transition-Metal (Co, Ni, and Fe)-Based Electrocatalysts for the Water Oxidation Reaction. Adv. Mater., 28, 9266-9291, 2016.
[9] C.H. Chuang, J.H. Li, Y.C. Chen, Y.S. Wang, C.W. Kung, Redox-Hopping and Electrochemical Behaviors of Metal-Organic Framework Thin Films Fabricated by Various Approaches. J. Phys. Chem. C, 124, 20854-20863, 2020.
[10] Q. Zhu, D. Dong, X.J. Zheng, H.Q. Song, X.R. Zhao, H.L. Chen, X.G. Chen, Chemiluminescence Determination of Ascorbic Acid Using Graphene Oxide@Copper-Based Metal-Organic Frameworks as a Catalyst. RSC Adv., 6, 25047-25055, 2016.
[11] J.C. Pickup, F. Hussain, N.D. Evans, O.J. Rolinski, D.J.S. Birch, Fluorescence-Based Glucose Sensors. Biosens. Bioelectron., 20, 2555-2565, 2005.
[12] J. Fonollosa, I. Rodriguez-Lujan, M. Trincavelli, A. Vergara, R. Huerta, Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry. Sensors, 14, 19336-19353, 2014.
[13] H.S.O. Chan, L.M. Gan, H. Chi, C.S. Toh, A Renewable Glucose Sensor Fabricated from Microemulsion Polymerization of Thiophene in a Flow Cell with Application in a High-Performance Liquid Chromatography System. J. Electroanal. Chem., 379, 293-300, 1994.
[14] N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical Biosensors. Chem. Soc. Rev., 39, 1747-1763, 2010.
[15] P.N. Bartlett, Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications. John Wiley & Sons, 2008.
[16] A.M. Grumezescu, Nanoparticles in Pharmacotherapy. Elsevier 2019.
[17] A. Shrivastava, V.B. Gupta, Methods for the Determination of Limit of Detection and Limit of Quantitation of the Analytical Methods. Chronicles of Young Scientists, 2, 21-25, 2011.
[18] L. Manjakkal, W.T. Dang, N. Yogeswaran, R. Dahiya, Textile-Based Potentiometric Electrochemical pH Sensor for Wearable Applications. Biosensors-Basel, 9, 12, 2019.
[19] I. Bakas, A. Hayat, S. Piletsky, E. Piletska, M.M. Chehimi, T. Noguer, R. Rouillon, Electrochemical Impedimetric Sensor Based on Molecularly Imprinted Polymers/Sol-Gel Chemistry for Methidathion Organophosphorous Insecticide Recognition. Talanta, 130, 294-298, 2014.
[20] Y.C. Wang, Y.C. Chen, W.S. Chuang, J.H. Li, Y.S. Wang, C.H. Chuang, C.Y. Chen, C.W. Kung, Pore-Confined Silver Nanoparticles in a Porphyrinic Metal-Organic Framework for Electrochemical Nitrite Detection. ACS Appl. Nano Mater., 3, 9440-9448, 2020.
[21] C.W. Kung, T.H. Chang, L.Y. Chou, J.T. Hupp, O.K. Farha, K.C. Ho, Porphyrin-Based Metal-Organic Framework Thin Films for Electrochemical Nitrite Detection. Electrochem. Commun., 58, 51-56, 2015.
[22] M.S. Hsu, Y.L. Chen, C.Y. Lee, H.T. Chiu, Gold Nanostructures on Flexible Substrates as Electrochemical Dopamine Sensors. ACS Appl. Mater. Interfaces, 4, 5570-5575, 2012.
[23] J. Luo, S.S. Jiang, H.Y. Zhang, J.Q. Jiang, X.Y. Liu, A Novel Non-Enzymatic Glucose Sensor Based on Cu Nanoparticle Modified Graphene Sheets Electrode. Anal. Chim. Acta, 709, 47-53, 2012.
[24] W.Z. Jia, M. Guo, Z. Zheng, T. Yu, E.G. Rodriguez, Y. Wang, Y. Lei, Electrocatalytic Oxidation and Reduction of H2O2 on Vertically Aligned Co3O4 Nanowalls Electrode: Toward H2O2 Detection. J. Electroanal. Chem., 625, 27-32, 2009.
[25] J. Li, K.M. Wang, X.H. Yang, D. Xiao, Sol-Gel Horseradish Peroxidase Biosensor for the Chemiluminescent Flow Determination of Hydrogen Peroxide. Anal. Commun., 36, 195-197, 1999.
[26] I. Mori, K. Takasaki, Y. Fujita, T. Matsuo, Selective and Sensitive Fluorometric Determinations of Cobalt(II) and Hydrogen Peroxide with Fluorescein-Hydrazide. Talanta, 47, 631-637, 1998.
[27] J.H. Shen, X.L. Yang, Y.H. Zhu, H.G. Kang, H.M. Cao, C.Z. Li, Gold-Coated Silica-Fiber Hybrid Materials for Application in a Novel Hydrogen Peroxide Biosensor. Biosens. Bioelectron., 34, 132-136, 2012.
[28] V.K. Shukla, P. Yadav, R.S. Yadav, P. Mishra, A.C. Pandey, A New Class of PANI-Ag Core-Shell Nanorods with Sensing Dimensions. Nanoscale, 4, 3886-3893, 2012.
[29] S. Palanisamy, H.F. Lee, S.M. Chen, B. Thirumalraj, An Electrochemical Facile Fabrication of Platinum Nanoparticle Decorated Reduced Graphene Oxide; Application for Enhanced Electrochemical Sensing of H2O2. RSC Adv., 5, 105567-105573, 2015.
[30] X.J. Bian, K. Guo, L. Liao, J.J. Xiao, J.L. Kong, C. Ji, B.H. Liu, Nanocomposites of Palladium Nanoparticle-Loaded Mesoporous Carbon Nanospheres for the Electrochemical Determination of Hydrogen Peroxide. Talanta, 99, 256-261, 2012.
[31] J. Wang, M. Musameh, Y.H. Lin, Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors. J. Am. Chem. Soc., 125, 2408-2409, 2003.
[32] H. Razmi, H. Nasiri, Trace Level Determination of Hydrogen Peroxide at a Carbon Ceramic Electrode Modified with Copper Oxide Nanostructures. Electroanalysis, 23, 1691-1698, 2011.
[33] C.Y. Lin, C.T. Chang, Iron Oxide Nanorods Array in Electrochemical Detection of H2O2. Sens. Actuator B-Chem., 220, 695-704, 2015.
[34] J.B. Goodenough, K.S. Park, The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc., 135, 1167-1176, 2013.
[35] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research Development on Sodium-Ion Batteries. Chem. Rev., 114, 11636-11682, 2014.
[36] R. Kotz, M. Carlen, Principles and Applications of Electrochemical Capacitors. Electrochim. Acta, 45, 2483-2498, 2000.
[37] G.P. Wang, L. Zhang, J.J. Zhang, A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev., 41, 797-828, 2012.
[38] A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, A Review on Recent Advances in Hybrid Supercapacitors: Design, Fabrication and Applications. Renew. Sust. Energ. Rev., 101, 123-145, 2019.
[39] P.-O. Logerais, O. Riou, M.A. Camara, J.-F. Durastanti, Study of Photovoltaic Energy Storage by Supercapacitors through Both Experimental and Modelling Approaches. Journal of Solar Energy, 2013, 659014, 2013.
[40] J.R. Miller, A. Burke, Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications. The Electrochemical Society Interface, 17, 53, 2008.
[41] P. Simon, Y. Gogotsi, Materials for Electrochemical Capacitors. Nat. Mater., 7, 845-854, 2008.
[42] Y. Gogotsi, R.M. Penner, Energy Storage in Nanomaterials - Capacitive Pseudocapacitive, or Battery-Like? ACS Nano, 12, 2081-2083, 2018.
[43] K. Jost, G. Dion, Y. Gogotsi, Textile Energy Storage in Perspective. J. Mater. Chem. A, 2, 10776-10787, 2014.
[44] Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon Materials for Chemical Capacitive Energy Storage. Adv. Mater., 23, 4828-4850, 2011.
[45] I. Shown, A. Ganguly, L.C. Chen, K.H. Chen, Conducting Polymer-Based Flexible Supercapacitor. Energy Sci. Eng., 3, 2-26, 2015.
[46] T.C. Liu, W.G. Pell, B.E. Conway, Self-Discharge and Potential Recovery Phenomena at Thermally and Electrochemically Prepared RuO2 Supercapacitor Electrodes. Electrochim. Acta, 42, 3541-3552, 1997.
[47] B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, Interconnected V2O5 Nanoporous Network for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces, 4, 4484-4490, 2012.
[48] I. Shafi, E.J. Liang, B.J. Li, Ultrafine Chromium Oxide (Cr2O3) Nanoparticles as a Pseudocapacitive Electrode Material for Supercapacitors. J. Alloy. Compd., 851, 10, 2021.
[49] W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Manganese Oxide-Based Materials as Electrochemical Supercapacitor Electrodes. Chem. Soc. Rev., 40, 1697-1721, 2011.
[50] J. Chen, K.L. Huang, S.Q. Liu, Hydrothermal Preparation of Octadecahedron Fe3O4 Thin Film for Use in an Electrochemical Supercapacitor. Electrochim. Acta, 55, 1-5, 2009.
[51] S.L. Xiong, C.Z. Yuan, M.F. Zhang, B.J. Xi, Y.T. Qian, Controllable Synthesis of Mesoporous Co3O4 Nanostructures with Tunable Morphology for Application in Supercapacitors. Chem.-Eur. J., 15, 5320-5326, 2009.
[52] G.F. Cai, X. Wang, M.Q. Cui, P. Darmawan, J.X. Wang, A.L.S. Eh, P.S. Lee, Electrochromo-Supercapacitor Based on Direct Growth of NiO Nanoparticles. Nano Energy, 12, 258-267, 2015.
[53] B.K. Singh, A. Shaikh, R.O. Dusane, S. Parida, Copper Oxide Nanosheets and Nanowires Grown by One-Step Linear Sweep Voltammetry for Supercapacitor Application. J. Energy Storage, 31, 13, 2020.
[54] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks. Science, 341, 974-+, 2013.
[55] G. Ferey, Hybrid Porous Solids: Past, Present, Future. Chem. Soc. Rev., 37, 191-214, 2008.
[56] A.J. Howarth, Y.Y. Liu, P. Li, Z.Y. Li, T.C. Wang, J. Hupp, O.K. Farha, Chemical, Thermal and Mechanical Stabilities of Metal-Organic Frameworks. Nat. Rev. Mater., 1, 15, 2016.
[57] I.M. Honicke, I. Senkovska, V. Bon, I.A. Baburin, N. Bonisch, S. Raschke, J.D. Evans, S. Kaskel, Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials. Angew. Chem.-Int. Edit., 57, 13780-13783, 2018.
[58] S.M. Cohen, Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks. Chem. Rev., 112, 970-1000, 2012.
[59] J.D. Evans, C.J. Sumby, C.J. Doonan, Post-Synthetic Metalation of Metal-Organic Frameworks. Chem. Soc. Rev., 43, 5933-5951, 2014.
[60] Y.B. Sun, L. Wang, W.A. Amer, H.J. Yu, J. Ji, L. Huang, J. Shan, R.B. Tong, Hydrogen Storage in Metal-Organic Frameworks. J. Inorg. Organomet. Polym. Mater., 23, 270-285, 2013.
[61] M.L. Ding, R.W. Flaig, H.L. Jiang, O.M. Yaghi, Carbon Capture and Conversion Using Metal-Organic Frameworks and MOF-Based Materials. Chem. Soc. Rev., 48, 2783-2828, 2019.
[62] J.R. Li, R.J. Kuppler, H.C. Zhou, Selective Gas Adsorption and Separation in Metal-Organic Frameworks. Chem. Soc. Rev., 38, 1477-1504, 2009.
[63] Z.X. Kang, L.L. Fan, D.F. Sun, Recent Advances and Challenges of Metal-Organic Framework Membranes for Gas Separation. J. Mater. Chem. A, 5, 10073-10091, 2017.
[64] J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal-Organic Framework Materials as Catalysts. Chem. Soc. Rev., 38, 1450-1459, 2009.
[65] M. Yoon, R. Srirambalaji, K. Kim, Homochiral Metal-Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chem. Rev., 112, 1196-1231, 2012.
[66] K.M.L. Taylor-Pashow, J. Della Rocca, Z.G. Xie, S. Tran, W.B. Lin, Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal-Organic Frameworks for Imaging and Drug Delivery. J. Am. Chem. Soc., 131, 14261-+, 2009.
[67] P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Ferey, R.E. Morris, C. Serre, Metal-Organic Frameworks in Biomedicine. Chem. Rev., 112, 1232-1268, 2012.
[68] Y.J. Cui, Y.F. Yue, G.D. Qian, B.L. Chen, Luminescent Functional Metal-Organic Frameworks. Chem. Rev., 112, 1126-1162, 2012.
[69] L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-Organic Framework Materials as Chemical Sensors. Chem. Rev., 112, 1105-1125, 2012.
[70] C.S. Liu, J.J. Li, H. Pang, Metal-Organic Framework-Based Materials as an Emerging Platform for Advanced Electrochemical Sensing. Coord. Chem. Rev., 410, 39, 2020.
[71] L.T. Liu, Y.L. Zhou, S. Liu, M.T. Xu, The Applications of Metal-Organic Frameworks in Electrochemical Sensors. ChemElectroChem, 5, 6-19, 2018.
[72] W. Xia, A. Mahmood, R.Q. Zou, Q. Xu, Metal-Organic Frameworks and Their Derived Nanostructures for Electrochemical Energy Storage and Conversion. Energy Environ. Sci., 8, 1837-1866, 2015.
[73] L. Wang, Y.Z. Han, X. Feng, J.W. Zhou, P.F. Qi, B. Wang, Metal-Organic Frameworks for Energy Storage: Batteries and Supercapacitors. Coord. Chem. Rev., 307, 361-381, 2016.
[74] J.E. Mondloch, M.J. Katz, N. Planas, D. Semrouni, L. Gagliardi, J.T. Hupp, O.K. Farha, Are Zr6-Based MOFs Water Stable? Linker Hydrolysis vs. Capillary-Force-Driven Channel Collapse. Chem. Commun., 50, 8944-8946, 2014.
[75] S. Yuan, J.S. Qin, C.T. Lollar, H.C. Zhou, Stable Metal-Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Sci., 4, 440-450, 2018.
[76] A.A. Talin, A. Centrone, A.C. Ford, M.E. Foster, V. Stavila, P. Haney, R.A. Kinney, V. Szalai, F. El Gabaly, H.P. Yoon, F. Leonard, M.D. Allendorf, Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices. Science, 343, 66-69, 2014.
[77] L. Sun, M.G. Campbell, M. Dinca, Electrically Conductive Porous Metal-Organic Frameworks. Angew. Chem.-Int. Edit., 55, 3566-3579, 2016.
[78] J.H. Li, Y.S. Wang, Y.C. Chen, C.W. Kung, Metal-Organic Frameworks toward Electrocatalytic Applications. Appl. Sci.-Basel, 9, 19, 2019.
[79] D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dinca, Conductive MOF Electrodes for Stable Supercapacitors with High Areal Capacitance. Nat. Mater., 16, 220-224, 2017.
[80] C.W. Kung, P.C. Han, C.H. Chuang, K.C.W. Wu, Electronically Conductive Metal-Organic Framework-Based Materials. APL Mater., 7, 8, 2019.
[81] C.W. Kung, K. Otake, C.T. Buru, S. Goswami, Y.X. Cui, J.T. Hupp, A.M. Spokoyny, O.K. Farha, Increased Electrical Conductivity in a Mesoporous Metal-Organic Framework Featuring Metallacarboranes Guests. J. Am. Chem. Soc., 140, 3871-3875, 2018.
[82] C.W. Kung, T.C. Wang, J.E. Mondloch, D. Fairen-Jimenez, D.M. Gardner, W. Bury, J.M. Klingsporn, J.C. Barnes, R. Van Duyne, J.F. Stoddart, M.R. Wasielewski, O.K. Farha, J.T. Hupp, Metal-Organic Framework Thin Films Composed of Free-Standing Acicular Nanorods Exhibiting Reversible Electrochromism. Chem. Mat., 25, 5012-5017, 2013.
[83] C.H. Shen, C.H. Chuang, Y.J. Gu, W.H. Ho, Y.D. Song, Y.C. Chen, Y.C. Wang, C.W. Kung, Cerium-Based Metal-Organic Framework Nanocrystals Interconnected by Carbon Nanotubes for Boosting Electrochemical Capacitor Performance. ACS Appl. Mater. Interfaces, 13, 16418-16426, 2021.
[84] R.J. Marshall, R.S. Forgan, Postsynthetic Modification of Zirconium Metal-Organic Frameworks. Eur. J. Inorg. Chem., 4310-4331, 2016.
[85] H.G.T. Nguyen, N.M. Schweitzer, C.Y. Chang, T.L. Drake, M.C. So, P.C. Stair, O.K. Farha, J.T. Hupp, S.T. Nguyen, Vanadium-Node-Functionalized UiO-66: A Thermally Stable MOF-Supported Catalyst for the Gas-Phase Oxidative Dehydrogenation of Cyclohexene. ACS Catal., 4, 2496-2500, 2014.
[86] Y.S. Wang, Y.C. Chen, J.H. Li, C.W. Kung, Toward Metal-Organic-Framework-Based Supercapacitors: Room-Temperature Synthesis of Electrically Conducting MOF-Based Nanocomposites Decorated with Redox-Active Manganese. Eur. J. Inorg. Chem., 3036-3044, 2019.
[87] C.H. Shen, Y.H. Chen, Y.C. Wang, T.E. Chang, Y.L. Chen, C.W. Kung, Probing the Electronic and Ionic Transport in Topologically Distinct Redox-Active Metal-Organic Frameworks in Aqueous Electrolytes. Phys. Chem. Chem. Phys., 11, 2022.
[88] Z.Y. Li, A.W. Peters, A.E. Platero-Prats, J. Liu, C.W. Kung, H. Noh, M.R. DeStefano, N.M. Schweitzer, K.W. Chapman, J.T. Hupp, O.K. Farha, Fine-Tuning the Activity of Metal-Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane. J. Am. Chem. Soc., 139, 15251-15258, 2017.
[89] Y.L. Chen, Y.C. Wang, Y.H. Chen, T.E. Chang, C.H. Shen, C.W. Huang, C.W. Kung, Pore-Confined Cobalt Sulphide Nanoparticles in a Metal-Organic Framework as a Catalyst for the Colorimetric Detection of Hydrogen Peroxide. Mater. Adv., 3, 6364-6372, 2022.
[90] S. Yuan, Y.P. Chen, J.S. Qin, W.G. Lu, X. Wang, Q. Zhang, M. Bosch, T.F. Liu, X.Z. Lian, H.C. Zhou, Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks. Angew. Chem.-Int. Edit., 54, 14696-14700, 2015.
[91] C.W. Kung, C.O. Audu, A.W. Peters, H. Noh, O.K. Farha, J.T. Hupp, Copper Nanoparticles Installed in Metal-Organic Framework Thin Films Are Electrocatalytically Competent for CO2 Reduction. ACS Energy Lett., 2, 2394-2401, 2017.
[92] T.E. Chang, C.H. Chuang, C.W. Kung, An Iridium-Decorated Metal-Organic Framework for Electrocatalytic Oxidation of Nitrite. Electrochem. Commun., 122, 5, 2021.
[93] M. Cai, Q. Loague, A.J. Morris, Design Rules for Efficient Charge Transfer in Metal-Organic Framework Films: The Pore Size Effect. J. Phys. Chem. Lett., 11, 702-709, 2020.
[94] L.Z. Yang, C.L. Xu, W.C. Ye, W.S. Liu, An Electrochemical Sensor for H2O2 Based on a New Co-Metal-Organic Framework Modified Electrode. Sens. Actuator B-Chem., 215, 489-496, 2015.
[95] W.J. Dang, Y.M. Sun, H. Jiao, L. Xu, M. Lin, AuNPs-NH2/Cu-MOF Modified Glassy Carbon Electrode as Enzyme-Free Electrochemical Sensor Detecting H2O2. J. Electroanal. Chem., 856, 7, 2020.
[96] Y.S. Chang, J.H. Li, Y.C. Chen, W.H. Ho, Y.D. Song, C.W. Kung, Electrodeposition of Pore-Confined Cobalt in Metal-Organic Framework Thin Films toward Electrochemical H2O2 Detection. Electrochim. Acta, 347, 10, 2020.
[97] C.W. Kung, J.E. Mondloch, T.C. Wang, W. Bury, W. Hoffeditz, B.M. Klahr, R.C. Klet, M.J. Pellin, O.K. Farha, J.T. Hupp, Metal-Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions to Enable Electrocatalytic Water Oxidation. ACS Appl. Mater. Interfaces, 7, 28223-28230, 2015.
[98] Y. Yan, Y.Q. Luo, J.Y. Ma, B. Li, H.G. Xue, H. Pang, Facile Synthesis of Vanadium Metal-Organic Frameworks for High-Performance Supercapacitors. Small, 14, 8, 2018.
[99] M. Ojha, B. Wu, M. Deepa, Cost-Effective MIL-53(Cr) Metal-Organic Framework-Based Supercapacitors Encompassing Fast-Ion (Li+/H+/Na+) Conductors. ACS Appl. Energ. Mater., 4, 4729-4743, 2021.
[100] P.A. Shinde, Y. Seo, S. Lee, H. Kim, Q.N. Pham, Y. Won, S.C. Jun, Layered Manganese Metal-Organic Framework with High Specific and Areal Capacitance for Hybrid Supercapacitors. Chem. Eng. J., 387, 11, 2020.
[101] N. Campagnol, R. Romero-Vara, W. Deleu, L. Stappers, K. Binnemans, D.E. De Vos, J. Fransaer, A Hybrid Supercapacitor Based on Porous Carbon and the Metal-Organic Framework MIL-100(Fe). ChemElectroChem, 1, 1182-1188, 2014.
[102] J.X. Ma, J. Li, R. Guo, H. Xu, F. Shi, L.Q. Dang, Z.H. Liu, J. Sun, Z.B. Lei, Direct Growth of Flake-Like Metal-Organic Framework on Textile Carbon Cloth as High-Performance Supercapacitor Electrode. J. Power Sources, 428, 124-130, 2019.
[103] C.Y. Yang, X.Y. Li, L. Yu, X.J. Liu, J. Yang, M.D. Wei, A New Promising Ni-MOF Superstructure for High-Performance Supercapacitors. Chem. Commun., 56, 1803-1806, 2020.
[104] D. Mohanadas, M. Abdah, N.H.N. Azman, J. Abdullah, Y. Sulaiman, A Promising Negative Electrode of Asymmetric Supercapacitor Fabricated by Incorporating Copper-Based Metal-Organic Framework and Reduced Graphene Oxide. Int. J. Hydrog. Energy, 46, 35385-35396, 2021.
[105] K.M. Choi, H.M. Jeong, J.H. Park, Y.B. Zhang, J.K. Kang, O.M. Yaghi, Supercapacitors of Nanocrystalline Metal-Organic Frameworks. ACS Nano, 8, 7451-7457, 2014.
[106] H. Furukawa, F. Gandara, Y.B. Zhang, J.C. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, Water Adsorption in Porous Metal-Organic Frameworks and Related Materials. J. Am. Chem. Soc., 136, 4369-4381, 2014.
[107] J.H. Li, Y.C. Chen, Y.S. Wang, W.H. Ho, Y.J. Gu, C.H. Chuang, Y.D. Song, C.W. Kung, Electrochemical Evolution of Pore-Confined Metallic Molybdenum in a Metal-Organic Framework (MOF) for All-MOF-Based Pseudocapacitors. ACS Appl. Energ. Mater., 3, 6258-6267, 2020.
[108] W.Y. Gao, A.D. Cardenal, C.H. Wang, D.C. Powers, In Operando Analysis of Diffusion in Porous Metal-Organic Framework Catalysts. Chem.-Eur. J., 25, 3465-3476, 2019.
[109] Y.J. Gu, Y.A. Lo, A.C. Li, Y.C. Chen, J.H. Li, Y.S. Wang, H.K. Tian, W. Kaveevivitchai, C.W. Kung, A Single Potassium-Ion Conducting Metal-Organic Framework. ACS Appl. Energ. Mater., 5, 8573-8580, 2022.
[110] J.M. Zhang, H. Zhang, J. Wu, J. Zhang, J.S. He, J.F. Xiang, NMR Spectroscopic Studies of Cellobiose Solvation in EmimAc Aimed to Understand the Dissolution Mechanism of Cellulose in Ionic Liquids. Phys. Chem. Chem. Phys., 12, 1941-1947, 2010.
[111] A. Salimi, R. Hallaj, S. Soltanian, H. Mamkhezri, Nanomolar Detection of Hydrogen Peroxide on Glassy Carbon Electrode Modified with Electrodeposited Cobalt Oxide Nanoparticles. Anal. Chim. Acta, 594, 24-31, 2007.
[112] K.K. Lee, P.Y. Loh, C.H. Sow, W.S. Chin, CoOOH Nanosheet Electrodes: Simple Fabrication for Sensitive Electrochemical Sensing of Hydrogen Peroxide and Hydrazine. Biosens. Bioelectron., 39, 255-260, 2013.
[113] M.M. Liu, S.J. He, W. Chen, Co3O4 Nanowires Supported on 3D N-Doped Carbon Foam as an Electrochemical Sensing Platform for Efficient H2O2 Detection. Nanoscale, 6, 11769-11776, 2014.
[114] S.Y. Xia, M.Q. Yu, J.Y. Hu, J.J. Feng, J.R. Chen, M.H. Shi, X.X. Weng, A Model of Interface-Related Enhancement Based on the Contrast between Co3O4 Sphere and Cube for Electrochemical Detection of Hydrogen Peroxide. Electrochem. Commun., 40, 67-70, 2014.
[115] M. Wang, X.D. Jiang, J.J. Liu, H.L. Guo, C.G. Liu, Highly Sensitive H2O2 Sensor Based on Co3O4 Hollow Sphere Prepared Via a Template-Free Method. Electrochim. Acta, 182, 613-620, 2015.
[116] C.Y. Su, W.J. Lan, C.Y. Chu, X.J. Liu, W.Y. Kao, C.H. Chen, Photochemical Green Synthesis of Nanostructured Cobalt Oxides as Hydrogen Peroxide Redox for Bifunctional Sensing Application. Electrochim. Acta, 190, 588-595, 2016.
[117] J. Balamurugan, T.D. Thanh, G. Karthikeyan, N.H. Kim, J.H. Lee, A Novel Hierarchical 3D N-Co-CNT@NG Nanocomposite Electrode for Non Enzymatic Glucose and Hydrogen Peroxide Sensing Applications. Biosens. Bioelectron., 89, 970-977, 2017.
[118] N.M. Umesh, K.K. Rani, R. Devasenathipathy, B. Sriram, Y.X. Liu, S.F. Wang, Preparation of Co-MOF Derived Co(OH)2/Multiwalled Carbon Nanotubes as an Efficient Bifunctional Electro Catalyst for Hydrazine and Hydrogen Peroxide Detections. J. Taiwan Inst. Chem. Eng., 93, 79-86, 2018.
[119] Z.L. Wu, L.P. Sun, Z. Zhou, Q. Li, L.H. Huo, H. Zhao, Efficient Nonenzymatic H2O2 Biosensor Based on ZIF-67 MOF Derived Co Nanoparticles Embedded N-Doped Mesoporous Carbon Composites. Sens. Actuator B-Chem., 276, 142-149, 2018.
[120] T.E. Chang, C.H. Chuang, Y.H. Chen, Y.C. Wang, Y.J. Gu, C.W. Kung, Iridium-Functionalized Metal-Organic Framework Nanocrystals Interconnected by Carbon Nanotubes Competent for Electrocatalytic Water Oxidation. ChemCatChem, 14, 10, 2022.