簡易檢索 / 詳目顯示

研究生: 李嘉鳴
Li, Chia-Ming
論文名稱: 以電漿氮化高參雜硼矽(111)基板之方式磊晶成長六方氮化硼薄膜
Epitaxy of Hexagonal Boron Nitride Thin Film by Plasma Nitridation of Heavily Doped Si:B
指導教授: 吳忠霖
Wu, Chung-Lin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 62
中文關鍵詞: 六方氮化硼高溫電漿氮化磊晶成長掃描式電子穿隧顯微鏡低能繞射電子儀
外文關鍵詞: h-BN, plasma nitridation, epitaxy, STM, LEED
相關次數: 點閱:84下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們希望能以嶄新的方式成長六方氮化硼:以高參雜硼的矽(111)晶圓為基板,對其進行熱處理使硼析出至表面。再利用電漿氮化的方式將氮置入表面,並進行後退火讓樣品有足夠能量產生鍵結。制備樣品後我們利用低能電子繞射儀(LEED)及掃瞄式穿隧電子顯微鏡(掃描式穿隧電子顯微鏡(STM))觀察成長結果。
    在低能電子繞射儀(LEED)的量測已成功的量測到與六方氮化硼晶格常數相同的繞射圖形。但掃描式穿隧電子顯微鏡(掃描式穿隧電子顯微鏡(STM) )目前仍無法獲得六方氮化硼的實空間影像。即使如此,經由許多參數的成長經驗我們仍發現了一些特殊的現象可供以後的研究者參考。
    此外,我們也試著模擬在本系統所成長的六方氮化硼實空間中的影像,這部分可以使後續的原子級表面影像研究更容易進行。

    Few-layers Hexagonal boron nitride(h-BN) thin film had been grown on heavily doped Si(111):B sample by thermal process and N2 -plasma nitirdation followed by annealing at high temperature. Growth result was investigated by low-energy electron diffraction (LEED) and scanning tunneling microscope (STM). Lattice constant and crystal orientation measured in LEED patterns was showed the formation of few-layers h-BN with silicon-boron reconstruction. However, h-BN image couldn’t be observed by STM while system condition could reach atomic resolution to obtain images of silicon-boron reconstruction even in very small region. To illustrate the discrepancy result in LEED and STM measurement, different methods were used to simulate surface morphology and provided a possible explanation.

    目錄 第一章 緒論 1 1.1. 前言 1 1.2. 六方氮化硼 3 1.2.1. 六方氮化硼的文獻回顧 3 1.2.2. 六方氮化硼的成長方式 5 1.3. 小結 6 第二章 實驗儀器以及原理 7 2.1. 掃描式穿隧電子顯微鏡(STM) 7 2.1.1. 掃描式穿隧電子顯微鏡(STM)原理 7 2.1.2. 真空系統 11 2.1.3. 探針製備 15 2.1.4. Si(111) 7×7 17 2.2. 低能電子繞射儀(LEED) 22 2.2.1. 低能電子繞射儀(LEED)理論 22 2.2.2. 低能電子繞射儀(LEED)實驗裝置 25 2.3. 電漿氮化 26 第三章 實驗流程與方法 27 3.1. Si(111)之√3×√3重構表面 27 3.1.1. Si(111)√3×√3重構表面之文獻回顧 27 3.1.2. Si(111)之√3×√3重構表面製作 30 3.2. 電漿氮化 31 3.2.1. 氮化裝置介紹 31 3.2.2. 電漿氮化實驗流程 32 3.3. 低能電子繞射儀(LEED)量測 33 3.4. 掃描式穿隧電子顯微鏡(STM)掃描 34 第四章 實驗結果與討論 36 4.1. 低能電子繞射儀(LEED)量測結果 36 4.1.1. 前置表面√3×√3的低能電子繞射儀(LEED)圖形 36 4.1.2. 不同溫度下氮化的低能電子繞射儀(LEED)圖形 37 4.1.3. 進行後退火候的LEED圖形 41 4.1.4. 1200℃氮化5分鐘,1200℃後退火2分鐘的低能電子繞射儀(LEED)圖形結果 43 4.1.5. 整理及結論 44 4.2. 掃描式穿隧電子顯微鏡(STM)掃描分析結果 45 4.2.1. 950℃氮化10秒 1100℃後退火2分鐘 45 4.2.2. 950℃氮化30秒 950℃後退火2分鐘 46 4.2.3. 1100℃氮化10秒 1100℃後退火2分鐘 46 4.2.4. 1100℃氮化10秒 1100℃後退火32分鐘 48 4.2.5. 1200℃氮化30秒 1200℃後退火2分鐘 49 4.2.6. 1250℃氮化5分鐘 1250℃後退火2分鐘 50 4.2.7. 小結 51 4.3. 樣品表面模擬 52 4.3.1. 晶格堆疊模擬 53 4.3.2. 低能電子繞射(LEED)圖形的傅立葉轉換模擬 57 4.3.3. 小結 59 第五章 結論 60 參考文獻 61

    Chuhei Oshima and Ayato Nagashima, J. Phys.:Condens. Matter 9, 1-20(1997)
    Jiamin Xue and Javier, Nature Matt. 10,282-285(2011)
    C. R.Dean and A.F. Young, Nature nano. 5,722-726(2010)
    Nasreen G. Chopra and R. J. Luyken Science 269, 966-967(1995)
    Martina Corso and Will Auwarter, Science 303, 217-220(2004)
    A. Lipp and K.A.Schwetz Journal of European Ceramic Society 5 3-9(1989)
    Kenji Watanabe and Takashi Tanigughi, Nature Materials 3 404-409(2004)
    Yong-Nian Xu and W.Y. Ching, Physical Review B 44 7787-7798(1991)
    P. B. Mirkarimi and K. F. McCarty, J. Mater. Res. 9 2925-2938
    P. B. Mirkarimi and K. F. McCarty, Materials Science and Engineering 21 47-100(1997)
    Laurence Vel and Gerard Demazeau Material, Science and Engineering 10 149-164(1991)
    X. Blasé and Angel Rubio, Physical Review B 51 6868-6875(1995)
    Nasim Alem and Rolf Erni, Physcial Rewiew B 80 155425(2009)
    X. Blase and A. Rubio, Europhys. Lett.28 335(1994)
    Masa Ishigami and Shaul Aloni, American Institute of Physics 03 94-99(2003)
    Madhu Menon and Deepak Srivastava, Chemical Physics Lett. 307 407-412(1999)
    Martina Corso and Will Auwarter, Science 303 217(2004)
    Takehiko Takahashi and Hideaki Itoh, Journal of Crystal Growth 47 245-250(1979)
    A. Nagashima and N Tejima, Physical Review Letters 75 3918- 3921(1995)
    Andrii Goriachko and Yunbin He, LAangmuir 23 2928-2931(2007)
    Guocai Dong and Elodie B. Fourre, 104 096102(2010)
    Fabrizio Orland and Rosanna Larciprete, J. Phys. Chem. C. 116 157-164(2012)
    Frank Muller and Stefan Hufner, Physical Review B 82 113406(2010)
    Lijie Ci and Li Song, Nature Material 28 1-6(2010)
    C. L. Tsai and Y. Kobayashi, Journal of Crystal Growth 311 3054-3057(2009)
    蔡志申, 曾鈺潔, 國科會高瞻自然科學教學資源平台 (2011)
    羅榮立, 物理雙月刊(2003)
    Chung-Lin Wu, Wei-Sheng Chen, Ying Hung Su, Surface Science Letters 606 L51-L54(2012)
    A. V. Zotov and V. G. Lifshits, Journal of Crystal Growth 121 88-92(1992)
    P. Bedrossian and Robert D. Meade, Physical Review Letters 63 1257-1260(1989)
    I. W. Lyo and Efthimios Kaxiras, and Ph. Avouris, Physical Review Letters 63 1261-1264(1989)
    Efthimios Kaxiras and K.C. Pandey, Physical Review B 41 1262-1265(1990)
    J. M. Nicholls and B. Reihl, Physical Review B 35 4137-4140(1987)
    Hong-Mao Lee, Cheng-Tsai Kuo and Hung-Wei Shiu, Appl. Phys. Lett. 95 222104(2009)

    下載圖示 校內:2015-07-12公開
    校外:2018-07-12公開
    QR CODE