| 研究生: |
黃明德 Huang, Ming-Der |
|---|---|
| 論文名稱: |
利用生物資訊泛基因體選殖及功能分析阿拉伯芥離層酸調控基因 Genome-wide in silico identification and functional characterization of abscisic acid-regulated genes in Arabidopsis |
| 指導教授: |
吳文鑾
Wu, Wen-Luan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 阿拉伯芥 、離層酸調控序列 、離層酸調控基因 、環境逆境 、離層酸 |
| 外文關鍵詞: | ABA-responsive element, Arabidopsis, ABA-regulated gene, abiotic stress, Abscisic acid |
| 相關次數: | 點閱:79 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
離層酸(abscisic acid, ABA)為重要的植物荷爾蒙,其廣泛地影響植物生長及發育。受離層酸所調控的基因其啟動子多具有一高度保留的轉錄調控序列-ABRE (ABA responsive element),該序列可被一群具有bZIP結構的轉錄調控因子(transcription factor)所辨認。目前雖已有部份離層酸調控基因被發現,但離層酸訊息調控路徑則仍未清楚,因此本研究希望以阿拉伯芥(Arabidopsis thaliana)為材料,利用生物資訊學(bioinformatics)的方式找出新的離層酸調控基因,並探討其於植物生理所扮演的角色。
首先利用電腦程式針對阿拉伯芥基因組序列(genomic sequence)進行搜尋,在阿拉伯芥26,207個基因中,共有137個基因含有兩個以上的ABREs,其中31個基因產物為未知蛋白(unknown protein)。利用RT-PCR檢測16個離層酸調控候選基因,共有12個基因於離層酸處理後有較高表現。以北方墨點法進一步分析離層酸調控基因於環境逆境下的表現,這些離層酸調控基因於鹽害、滲透壓及寒冷逆境下的表現量增加,顯示這些基因可能和環境逆境有關。利用轉殖阿拉伯芥,進一步研究這些基因於植物中所扮演的角色。其中TMAC1 (two or more ABREs containing gene 1)為一PMP22 (22-kDa peroxisomal membrane protein)相似蛋白,其表現除了受離層酸、鹽及冷處理所誘導,於物理傷害(wounding)下表現量亦增加,顯示其功能應和這些逆境有關。此外,TMAC1表現亦受到H2O2所誘導,且其不論在野生株或離層酸缺失株(ABA-deficient mutant)中均可受到物理傷害誘導,顯示H2O2在TMAC1於物理傷害表現時扮演重要的角色。TMAC2為一未知蛋白,於離層酸、鹽處理下會大量表現。過量表現TMAC2於阿拉伯芥不僅造成植株對離層酸及鹽處理不敏感,亦使植物開花時間延長、根變短及葉子澱粉堆積增加,顯示TMAC2在這些植物生理上都是扮演著負向調控的角色。綜合上述,本研究提供一個在後基因體時代有效且快速的基因功能研究策略。
Abscisic acid (ABA) is a key phytohormone which regulates plant development and growth in many aspects. Functional analysis of the ABA-regulated gene promoter reveals a conserved ABA-responsive element (ABRE), which is recognized by a group of transcription factors with a bZIP domain. Although some ABA-regulated genes have been reported, the molecular mechanism of ABA signaling remained unknown. To facilitate the identification of ABA-regulated genes, we identify novel ABA-regulated genes in Arabidopsis thaliana using a bioinformatics approach.
A computational search revealed that 137 of 26,207 genes possess two or more ABREs in Arabidopsis, and 31 genes encode unknown proteins. In an attempt to monitor the expression of these candidate genes in response to ABA, we selected 16 genes were and examined their expression by RT-PCR. Among these 16 genes, 12 candidates were up-regulated by ABA. In addition, Northern blot analysis indicated that some candidates were further shown to differentially respond to various stresses. To explore the functions of these ABA-regulated genes, we generated the transgenic Arabidopsis plants. One of these genes, TMAC1 (two or more ABREs containing gene 1), which encodes a PMP22-like protein, was up-regulated by ABA, salt, cold and wounding stresses; the results indicated that TMAC1 is a stress-related gene. Additionally, TMAC1 transcript rapidly increased in response to wounding in both wild-type and ABA-deficient mutant leaves and exogenous hydrogen peroxide (H2O2) stimulated TMAC1 expression. Thus, the signaling molecule ROS, rather than ABA, may be the intermediate of the signal transduction pathway leading to TMAC1 expression by wounding. TMAC2, which encodes a protein with no domains of known function, was highly induced by ABA and salt. Constitutive overexpression of TMAC2 in transgenic plants resulted in insensitivity of the plants to ABA and salt; the results suggested that TMAC2 plays a negative role in ABA and salt stress responses. Furthermore, TMAC2-overexpressing plants exhibited the phenotypes of short roots, late flowering and starch-excess leaves. Taken together, these results show that in silico identification of ABA-regulated genes by using data mining of Arabidopsis genome sequence is a fast and reliable approach to dissecting the function of these genes.
Baud S., Boutin J.P., Miquel M., Leponiez L. and Rochat C. (2002). An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol. Biochem. 40: 151-160.
Bartels D., Singh M. and Salamini F. (1988) Onset of desiccation tolerance during development of the barley embryo. Planta 175: 485-492.
Borner R., Kampmann G., Chandler J., Gleissner R., Wisman E., Apel K. and Melzer S. (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J. 24: 591-599.
Bray E.A. (1993) Molecular responses to water deficit. Plant Physiol. 103: 1035-1040.
Busk P.K. and Pages M. (1998) Regulation of abscisic acid-induced transcription. Plant Mol. Biol. 37: 425-435.
Chang S., Puryear J. and Cairney J. (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11: 113-116.
Chen W. and Singh K.B. (1999) The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J. 19: 667-677.
Cheng W.H., Endo A., Zhou L., Penney J., Chen H.C., Arroyo A., Leon P., Nambara E., Asami T., Seo M., Koshiba T. and Sheen J. (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14: 2723-2743.
Chernys J.T. and Zeevaart J.A. (2000) Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol. 124: 343-353.
Choi H., Hong J., Ha J., Kang J. and Kim S.Y. (2000) ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem. 275: 1723-1730.
Clough S.J. and Bent A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.
Cutler A.J. and Krochko J.E. (1999) Formation and breakdown of ABA. Trends Plant Sci. 4: 472-478.
Dunn M.A., White A.J., Vural S. and Hughes M.A. (1998) Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol. Biol. 38: 551-564.
Ebell L. (1969) Specific total starch determinations in conifer tissues with glucose oxidase. Phytochemistry 8: 25-36.
Eimert K., Wang S.M., Lue W.I. and Chen J. (1995) Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell 7: 1703-1712.
Finkelstein R.R., Gampala S.S. and Rock C.D. (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14: S15-45.
Fujiki Y., Yoshikawa Y., Sato T., Inada N., Ito M., Nishida I. and Watanabe A. (2001) Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol. Plant 111: 345-352.
Fujita M., Fujita Y., Maruyama K., Seki M., Hiratsu K., Ohme-Takagi M., Tran L.S., Yamaguchi-Shinozaki K. and Shinozaki K. (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39: 863-876.
Garreton V., Carpinelli J., Jordana X. and Holuigue L. (2002) The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiol. 130: 1516-1526.
Gietz D., St Jean A., Woods R.A. and Schiestl R.H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20: 1425.
Gilroy S., Fricker M.D., Read N.D. and Trewavas A.J. (1991) Role of calcium in signal transduction of commelina guard cells. Plant Cell 3: 333-344.
Grill E. and Himmelbach A. (1998) ABA signal transduction. Curr. Opin. Plant Biol. 1: 412-418.
Giraudat J., Hauge B.M., Valon C., Smalle J., Parcy F. and Goodman H.M. (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4: 1251-1261.
Giraudat J., Parcy F., Bertauche N., Gosti F., Leung J., Morris P.C., Bouvier-Durand M. and Vartanian N. (1994) Current advances in abscisic acid action and signalling. Plant Mol. Biol. 26: 1557-1577.
Gosti F., Beaudoin N., Serizet C., Webb A.A., Vartanian N. and Giraudat J. (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11: 1897-1910.
Guiltinan M.J., Marcotte W.R.J. and Quatrano R.S. (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267-271.
Haake V., Cook D., Riechmann J.L., Pineda O., Thomashow M.F. and Zhang J.Z. (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130: 639-648.
Haas B.J., Wortman J.R., Ronning C.M., Hannick L.I., Smith R.K., Jr., Maiti R., Chan A.P., Yu C., Farzad M., Wu D., White O. and Town C.D. (2005) Complete reannotation of the Arabidopsis genome: methods, tools, protocols and the final release. BMC Biol. 3: 7.
Hattori T., Totsuka M., Hobo T., Kagaya Y. and Yamamoto-Toyoda A. (2002) Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol. 43: 136-140.
Himmelbach A., Yang Y. and Grill E. (2003) Relay and control of abscisic acid signaling. Curr. Opin. Plant Biol. 6: 470-479.
Hoekema A., Hirsch P.R., Hooykaas P.J.J. and Schilperoort R.A. (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179-180.
Hoekstra F.A., Golovina E.A. and Buitink J. (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6: 431-438.
Hobo T., Asada M., Kowyama Y. and Hattori T. (1999) ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J. 19: 679-689.
Hwang I. and Sheen J. (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413: 383-389.
Iuchi S., Kobayashi M., Yamaguchi-Shinozaki K. and Shinozaki K. (2000) A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol. 123: 553-562.
Iuchi S., Kobayashi M., Taji T., Naramoto M., Seki M., Kato T., Tabata S., Kakubari Y., Yamaguchi-Shinozaki K. and Shinozaki K. (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27: 325-333.
Ingram J. and Bartels D. (1996) The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377-403.
Iwasaki T., Yamaguchi-Shinozaki K. and Shinozaki K. (1995) Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol. Gen. Genet. 247: 391-398.
Jefferson R.A., Kavanagh T.A. and Bevan M.W. (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901-3907.
Kang J.Y., Choi H.I., Im M.Y. and Kim S.Y. (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14: 343-357.
Kao C.Y., Cocciolone S.M., Vasil I.K. and McCarty D.R. (1996) Localization and interaction of the cis-acting elements for abscisic acid, VIVIPAROUS1, and light activation of the C1 gene of maize. Plant Cell 8: 1171-1179.
Keith K., Kraml M., Dengler N.G. and McCourt P. (1994) fusca3: A heterochronic mutation affecting late embryo development in Arabidopsis. Plant Cell 6: 589-600.
Kim S., Kang J.Y., Cho D.I., Park J.H. and Kim S.Y. (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J. 40: 75-87.
Koornneef M., Léon-Kloosterziel K.M., Schwartz S.H. and Zeevaart J.A.D. (1998) The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiol. Biochem. 36: 83-89.
Kwak J.M., Moon J.H., Murata Y., Kuchitsu K., Leonhardt N., DeLong A. and Schroeder J.I. (2002) Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell 14: 2849-2861.
Kwak J.M., Mori I.C., Pei Z.M., Leonhardt N., Torres M.A., Dangl J.L., Bloom R.E., Bodde S., Jones J.D. and Schroeder J.I. (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22: 2623-2633.
Lapik Y.R. and Kaufman L.S. (2003) The Arabidopsis cupin domain protein AtPirin1 interacts with the G protein alpha-subunit GPA1 and regulates seed germination and early seedling development. Plant Cell 15: 1578-1590.
Lemmens M., Verheyden K., Van Veldhoven P., Vereecke J., Mannaerts G.P. and Carmeliet E. (1989) Single-channel analysis of a large conductance channel in peroxisomes from rat liver. Biochim. Biophys. Acta. 984: 351-359.
Leon J., Rojo E. and Sanchez-Serrano J.J. (2001) Wound signalling in plants. J. Exp. Bot. 52: 1-9.
Leung J. and Giraudat J. (1998) Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 49: 199-222.
Liu X., Yue Y., Li B., Nie Y., Li W., Wu W.H. and Ma L. (2007) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315: 1712-1716.
Lois L.M., Lima C.D. and Chua N.H. (2003) Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis. Plant Cell 15: 1347-1359.
Lopez-Molina L., Mongrand S., Kinoshita N. and Chua N.H. (2003) AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes Dev. 17: 410-418.
Lu C., Han M.H., Guevara-Garcia A. and Fedoroff N.V. (2002) Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc. Natl. Acad. Sci. USA 99: 15812-15817.
Maleck K., Levine A., Eulgem T., Morgan A., Schmid J., Lawton K.A., Dangl J.L. and Dietrich R.A. (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat. Genet. 26: 403-410.
McCarty D.R., Carson C.B., Stinard P.S. and Robertson D.S. (1989) Molecular analysis of viviparous-1: an abscisic acid-insensitive mutant of maize. Plant Cell 1: 523-532.
McAinsh M.R., Brownlee C. and Hetherington A.M. (1990) Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature 343: 186-188.
Meinke D.W. (1992) A homeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science 258: 1647-1650.
Menkens A.E., Schindler U. and Cashmore A.R. (1995) The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem. Sci. 20: 506-510.
Miller J.H. (1992) A Short Course in Bacterial Genetics: A laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
Murashige T. and Skoog F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473-497.
Muir S.R. and Sanders D. (1997) Inositol 1,4,5-trisphosphate-sensitive Ca2+ release across nonvacuolar membranes in cauliflower. Plant Physiol. 114: 1511-1521.
Nakabayashi K., Okamoto M., Koshiba T., Kamiya Y. and Nambara E. (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J. 41: 697-709.
Nambara E. and Marion-Poll A. (2005) Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56: 165-185.
Narusaka Y., Nakashima K., Shinwari Z.K., Sakuma Y., Furihata T., Abe H., Narusaka M., Shinozaki K. and Yamaguchi-Shinozaki K. (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J. 34: 137-148.
Nishiuchi T., Shinshi H. and Suzuki K. (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. J. Biol. Chem. 279: 55355-55361.
Novillo F., Alonso J.M., Ecker J.R. and Salinas J. (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 101: 3985-3990.
Ohkuma K, Lyon J.L., Addicot F.T. and Smith OE. (1963) Abscisin II, an abscission-accelerating substance from young cotton fruit. Science 142: 1592-1593.
Onouchi H., Igeno M.I., Perilleux C., Graves K. and Coupland G. (2000) Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12: 885-900.
Orozco-Cardenas M. and Ryan C.A. (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 96: 6553-6557.
Pei Z.M., Murata Y., Benning G., Thomine S., Klusener B., Allen G.J., Grill E. and Schroeder J.I. (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406: 731-734.
Pelaz S., Gustafson-Brown C., Kohalmi S.E., Crosby W.L. and Yanofsky M.F. (2001) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J. 26: 385-394.
Porch T.G., Tseung C.W., Schmelz E.A. and Settles A.M. (2006) The maize Viviparous10/Viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis. Plant J. 45: 250-263.
Ramirez-Parra E., Frundt C. and Gutierrez C. (2003) A genome-wide identification of E2F-regulated genes in Arabidopsis. Plant J. 33: 801-811.
Razem F.A., El-Kereamy A., Abrams S.R. and Hill R.D. (2006) The RNA-binding protein FCA is an abscisic acid receptor. Nature 439: 290-294.
Rock C. (2000) Pathways to abscisic acid-regulated gene expression. New Phytol. 148: 357-396.
Sanchez J.P. and Chua N.H. (2001) Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. Plant Cell 13: 1143-1154.
Seki M., Ishida J., Narusaka M., Fujita M., Nanjo T., Umezawa T., Kamiya A., Nakajima M., Enju A., Sakurai T., Satou M., Akiyama K., Yamaguchi-Shinozaki K., Carninci P., Kawai J., Hayashizaki Y. and Shinozaki K. (2002) Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct. Integr. Genomics 2: 282-291.
Seo M., Peeters A.J., Koiwai H., Oritani T., Marion-Poll A., Zeevaart J.A., Koornneef M., Kamiya Y. and Koshiba T. (2000) The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc. Natl. Acad. Sci. USA 97: 12908-12913.
Sheen J., Hwang S., Niwa Y., Kobayashi H. and Galbraith D.W. (1995) Green-fluorescent protein as a new vital marker in plant cells. Plant J. 8: 777-784.
Sheen J. (1998) Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc. Natl. Acad. Sci. USA 95: 975-980.
Shen Q. and Ho T.H. (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7: 295-307.
Shen Y.Y., Wang X.F., Wu F.Q., Du S.Y., Cao Z., Shang Y., Wang X.L., Peng C.C., Yu X.C., Zhu S.Y., Fan R.C., Xu Y.H. and Zhang D.P. (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443: 823-826.
Shinozaki K. and Yamaguchi-Shinozaki K. (1997) Gene expression and signal transduction in water-stress response. Plant Physiol. 115: 327-334.
Shinozaki K. and Yamaguchi-Shinozaki K. (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217-223.
Shinozaki K., Yamaguchi-Shinozaki K. and Seki M. (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6: 410-417.
Smith A.M., Zeeman S.C. and Smith S.M. (2005) Starch degradation. Annu. Rev. Plant Biol. 56: 73-98.
Thomas, T.H., Wareing, P.F. and Bobinson, P.M. (1965) Action of the sycamore 'dormin' as a gibberellin antagonist. Nature 205: 1270-1272.
Thompson A.J., Jackson A.C., Symonds R.C., Mulholland B.J., Dadswell A.R., Blake P.S., Burbidge A. and Taylor I.B. (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J. 23: 363-374.
Trott A. and Morano K.A. (2004) SYM1 is the stress-induced Saccharomyces cerevisiae ortholog of the mammalian kidney disease gene Mpv17 and is required for ethanol metabolism and tolerance during heat shock. Eukaryot. Cell 3: 620-631.
Tsukamoto S., Morita S., Hirano E., Yokoi H., Masumura T. and Tanaka K. (2005) A novel cis-element that is responsive to oxidative stress regulates three antioxidant defense genes in rice. Plant Physiol. 137: 317-327.
Tugal H.B., Pool M. and Baker A. (1999) Arabidopsis 22-kilodalton peroxisomal membrane protein. Nucleotide sequence analysis and biochemical characterization. Plant Physiol. 120: 309-320.
Uno Y., Furihata T., Abe H., Yoshida R., Shinozaki K. and Yamaguchi-Shinozaki K. (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA 97: 11632-11637.
Van Veldhoven P.P., Just W.W. and Mannaerts G.P. (1987) Permeability of the peroxisomal membrane to cofactors of beta-oxidation. Evidence for the presence of a pore-forming protein. J. Biol. Chem. 262: 4310-4318.
Wagner G., Stettmaier K., Bors W., Sies H., Wagner E.M., Reuter A. and Weiher H. (2001) Enhanced gamma-glutamyl transpeptidase expression and superoxide production in Mpv17-/- glomerulosclerosis mice. Biol. Chem. 382: 1019-1025.
Wang H., Qi Q., Schorr P., Cutler A.J., Crosby W. and Fowke, L.C. (1998) ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J. 15: 501-510.
Wang X.Q., Ullah H., Jones A.M. and Assmann S.M. (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292: 2070-2072.
West M., Yee K.M., Danao J., Zimmerman J.L., Fischer R.L., Goldberg R.B. and Harada J.J. (1994) LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6: 1731-1745.
Wobus U. and Weber H. (1999) Seed maturation: genetic programmes and control signals. Curr. Opin. Plant Biol. 2: 33-38.
Wu Y., Kuzma J., Marechal E., Graeff R., Lee H.C., Foster R. and Chua N.H. (1997) Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278: 2126-2130.
Xiong L., Ishitani M., Lee H. and Zhu J.K. (1999) HOS5-a negative regulator of osmotic stress-induced gene expression in Arabidopsis thaliana. Plant J. 19: 569-578.
Xiong L., Ishitani M., Lee H. and Zhu J.K. (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13: 2063-2083.
Xiong L. and Zhu J.K. (2003) Regulation of abscisic acid biosynthesis. Plant Physiol. 133: 29-36.
Yang H., Saitou T., Komeda Y., Harada H. and Kamada H. (1997) Arabidopsis thaliana ECP63 encoding a LEA protein is located in chromosome 4. Gene 184: 83-88.
Yano R., Nakamura M., Yoneyama T. and Nishida I. (2005) Starch-related -glucan/water dikinase is involved in the cold-induced development of freezing tolerance in Arabidopsis. Plant Physiol. 138: 837-846.
Yu T.S., Kofler H., Hausler R.E., Hille D., Flugge U.I., Zeeman S.C., Smith A.M., Kossmann J., Lloyd J., Ritte G., Steup M., Lue W.L., Chen J. and Weber A. (2001) The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter. Plant Cell 13: 1907-1918.
Zhang W., Ruan J., Ho T.H., You Y., Yu T. and Quatrano R.S. (2005) Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics 21: 3074-3081.
Zhu J.K. (2002) Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53: 247-273.
Zwacka R.M., Reuter A., Pfaff E., Moll J., Gorgas K., Karasawa M. and Weiher H. (1994) The glomerulosclerosis gene Mpv17 encodes a peroxisomal protein producing reactive oxygen species. EMBO J. 13: 5129-5134.