| 研究生: |
蘇冠宇 Su, Kuan-Yu |
|---|---|
| 論文名稱: |
微銑削表面誤差與穩定性之耦合效應探討 Coupling Effect of Surface Location Error and Stability in Micro End Milling |
| 指導教授: |
王俊志
Wang, Jiunn-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 微銑削 、表面誤差 、系統穩定性 、再生周期 |
| 外文關鍵詞: | micro machining, surface location error, milling chatter, regeneration period |
| 相關次數: | 點閱:134 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來微銑削已經廣泛地使用在工業界,尤其在製做精微模具、微流道、微感測器及微結構扮演重要角色。影響微銑削產能的最大因素是加工穩定性和表面誤差。不穩定之銑削加工又稱顫振,當顫振發生時,對刀具壽命和工件表面品質都有不良的影響。通常為了避免這些問題,往往採取較保守的材料移除率而犧牲產能。因此同時考慮並掌握微銑削穩定性與表面誤差實為重要的課題。
本論文宗旨在探討微銑削時加工參數對工件的表面誤差與穩定性及兩者之間的關系。利用有限元素法建立銑刀動態模型,將方程式解耦後,以振型疊加法利用四階 Runge-Kutta 法來進行系統動態模擬。針對不同的軸向切深、徑向切深、每刃進給以及轉速進行模擬,並觀察其力量、刀具位移、刀具軌跡、切屑厚度、再生周期與穩定性及表面誤差的關連性。最後發現微銑刀的撓性結構雖然對表面誤差有不良影響,但是提升再生顫振的穩定性。此外發現再生周期亦會改變,影響主軸轉速對穩定性的影響。本文發現在非槽銑的情況下,順銑的耳垂圖隨著每刃進給的增加而向右高轉速區移動,而逆銑時的耳垂圖則向左之低轉速區移動。表面誤差主要隨著每刃進給與徑向切深增加而增加,其與再生周期之關聯性並不明顯。
This research aims to investigate the relationship between work piece surface error and stability. By using finite element method to establish micro end miller of dynamic model. Then decoupling the system and convert it from practical coordinate to modal coordinate. To simulate the system response, using modal acceleration method and 4th Runge-Kutta method. Investigating the effect of axial cut depth, radial cut depth, feed per revolution to machining force, tool canter position trajectory and surface error.
This research found that flexure of tool results in the machining stability increases though flexure also results in form error. Regeneration period is varied with the rotation of spindle and axial position of tool. The stability lobe shifts to high spindle speed zone as the regeneration period increase. The radial cut depth has negative correlation with the change of regeneration period. Surface error has positive correlation with radial cut depth and feed per revolution.
[1] W. Kline, R. DeVor, and J. Lindberg, “The prediction of cutting forces in end milling with application to cornering cuts,” International Journal of Machine Tool Design and Research, vol. 22, no. 1, pp. 7–22, 1982.
[2] S. Y. Liang and J. Wang, “Milling force convolution modeling for identification of cut- ter axis offset,” International Journal of Machine Tools and Manufacture, vol. 34, no. 8, pp. 1177–1190, 1994.
[3] M. Malekian, S. S. Park, and M. B. Jun, “Modeling of dynamic micro-milling cutting forces,” International Journal of Machine Tools and Manufacture, vol. 49, no. 7, pp. 586– 598, 2009.
[4] E. Uhlmann and F. Mahr, “A time domain simulation approach for micro milling pro- cesses,” Procedia CIRP, vol. 4, pp. 22–28, 2012.
[5] S. Afazov, S. Ratchev, and J. Segal, “Modelling and simulation of micro-milling cutting forces,” Journal of Materials Processing Technology, vol. 210, no. 15, pp. 2154–2162, 2010.
[6] S. Afazov, S. Ratchev, J. Segal, and A. Popov, “Chatter modelling in micro-milling by con- sidering process nonlinearities,” International Journal of Machine Tools and Manufacture, vol. 56, pp. 28–38, 2012.
[7] S. Afazov, D. Zdebski, S. Ratchev, J. Segal, and S. Liu, “Effects of micro-milling conditions on the cutting forces and process stability,” Journal of Materials Processing Tech., vol. 213, no. 5, pp. 671–684, 2013.
[8] C. Eksioglu, Z. Kilic, and Y. Altintas, “Discrete-time prediction of chatter stability, cutting forces, and surface location errors in flexible milling systems,” Journal of Manufacturing Science and Engineering, vol. 134, no. 6, p. 061006, 2012.
[9] W. A. Kline and R. DeVor, “The effect of runout on cutting geometry and forces in end milling,” International Journal of Machine Tool Design and Research, vol. 23, no. 2, pp. 123–140, 1983.
[10] J. Sutherland and R. DeVor, “An improved method for cutting force and surface error prediction in flexible end milling systems,” Journal of engineering for industry, vol. 108, no. 4, pp. 269–279, 1986.
[11] I. Minis and R. Yanushevsky, “A new theoretical approach for the prediction of machine tool chatter in milling,” Journal of Manufacturing Science and Engineering, vol. 115, no. 1, pp. 1–8, 1993.
[12] Y. Altinta¸s and E. Budak, “Analytical prediction of stability lobes in milling,” CIRP Annals-Manufacturing Technology, vol. 44, no. 1, pp. 357–362, 1995.
[13] E. Budak and Y. Altintas, “Analytical prediction of chatter stability in milling—part i: general formulation,” Journal of Dynamic Systems, Measurement, and Control, vol. 120, no. 1, pp. 22–30, 1998.
[14] E. Budak and Y. Altintas, “Analytical prediction of chatter stability in milling—part ii: application of the general formulation to common milling systems,” Journal of Dynamic Systems, Measurement, and Control, vol. 120, no. 1, pp. 31–36, 1998.
[15] S. Merdol and Y. Altintas, “Multi frequency solution of chatter stability for low immersion milling,” Journal of Manufacturing Science and Engineering, vol. 126, no. 3, pp. 459–466, 2004.
[16] Y. Ding, L. Zhu, X. Zhang, and H. Ding, “A full-discretization method for prediction of milling stability,” International Journal of Machine Tools and Manufacture, vol. 50, no. 5, pp. 502–509, 2010.
[17] C. Zheng and J.-J. J. Wang, “Stability prediction in radial immersion for milling with symmetric structure,” International Journal of Machine Tools and Manufacture, vol. 75, pp. 72–81, 2013.
[18] H.-N. Chiang and J. Junz Wang, “Generating mechanism and formation criteria of kinked surface in peripheral end milling,” International Journal of Machine Tools and Manufac- ture, vol. 51, no. 10, pp. 816–830, 2011.
[19] Y. Shi, F. Mahr, U. von Wagner, and E. Uhlmann, “Gyroscopic and mode interaction effects on micro-end mill dynamics and chatter stability,” The International Journal of Advanced Manufacturing Technology, vol. 65, no. 5-8, pp. 895–907, 2013.
[20] S. Filiz and O. B. Ozdoganlar, “A three-dimensional model for the dynamics of micro- endmills including bending, torsional and axial vibrations,” Precision Engineering, vol. 35, no. 1, pp. 24–37, 2011.
[21] A. J. Ferreira, MATLAB codes for finite element analysis: solids and structures, vol. 157.
Springer, 2008.
[22] T. J. Hughes, The finite element method: linear static and dynamic finite element analysis.
Courier Dover Publications, 2012.
[23] 王勛成與邵敏, 有限元法基本原理和數值方法. 清大出版社有限公司, 1997. [24] L. Richard and J. Burden, “Douglas faires, numerical analysis,” 1988.