| 研究生: |
洪英傑 Hung, Yin-Chieh |
|---|---|
| 論文名稱: |
以基因演算法研究電腦組裝工廠之產品及人員指派問題 Solving the Product and Operator assignment problem for a PC assembly factory by Genetic Algorithms |
| 指導教授: |
楊大和
Yang, Taho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造工程研究所 Institute of Manufacturing Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 多目標規劃 、基因演算法 、指派問題 、電腦組裝 |
| 外文關鍵詞: | PC Assembly, Assignment Problem, Genetic Algorithms, Multi-objective goal programming |
| 相關次數: | 點閱:63 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,電子資訊產品的市場需求快速成長,電腦組裝常常被要求快速反應市場的需要,所以要如何快速、正確的產生產品的裝配規劃,在生產計劃中是很重要的。電腦組裝工廠有前置時間(lead time)極短之特性,使得電腦組裝工廠之指派方式難以規劃。其次,電腦組裝因為其外型之緣故,無法進行自動化或半自動化組裝,故皆為純人力組裝,因此需要考量學習曲線(learning curve)於指派之規劃。當作業員所分派之組裝作業之種類加倍時,因為熟練度不足之緣故,其所耗費之組裝時間超過兩倍組裝單一作業之時間,這便是學習曲線中規模效應所造成之影響。因此,如何在考量人力成本與makespan間選擇適宜之規模大小,便是電腦組裝規劃之問題所在。本研究希望能針對電腦組裝指派發展出一即時模式,同時考量人力成本與makespan之多目標規劃,即時決策訂單分割與否、組裝線數量、組裝步驟與作業員之指派並配合基因演算法求解,以作為實際電腦組裝工廠之參考。
In recent years, needs of electronic products grow rapidly. For the PC assembly, immediate response to the market needs is required. In the production planning, fast and precise product assignment design is, thus, very important. The characteristics of extreme short lead time of computer assembly factories makes the assignment difficult to be planned. In addition, because of the external form of computer, automatic or semi-automatic assembly is not possible. Manual assembly is the only method. Therefore, for the assigned program, learning curve should be taken into consideration. The size effect has influence on learning curve. For example, when the assigned assembly operation of operator varies, it consumes twice the time that a single machine requires. It is due to lacking adaptation. Thus, the main issue of computer assembly program is about choosing an adequate scale between manual cost and makespan.
This research targets on the development of a real-time model of computer assembly assignment. In order to be the reference of actual computer assembly factories, multiple aims arrangement between manual cost and makespan, decision of whether split the order, the quantity of assembly lines, the process of operation, and the assignment of operators are to be considered. At last, genetic algorithms will be applied in order to obtain the result.
Andreas B., Hollnagel E. and Brendeford T. S.,1999“Human-machine function Allocation: A Functional Modeling Approach,” Rellability Engineering & System Safety 64,291-300
Back, T., Fogel D. B., and Michalewicz, Z., 1997, Handbook Evolutionary Computation, A Joint Publication of Institute of Physics Publishing And Oxford University Press.
Bazaraa, M., Jarvis., John, J., and Sherali, H. D., 1990, Linear Programming And Network Flows, Second Edition, John Wiley & Sons, New York
Blazewicz, J., 1996, Scheduling Computer and Manufacturing Process, Springer-Verlag , Berlin,Germany.
Chu, P. C. and Beasley, J. E., 1997, “A Genetic Algorithm for the Generalised Assignment Problem”, Computers & Operations Research, Vol. 24, No. 1, pp. 17-23.
Costa, L. and Oliveria, P., 2001, “Evolutionary Algorithms Approach to the Solution of Mixed Integer Non-linear Programming Problems”, Computers and Chemical Engineering, Vol. 25, pp. 257-266.
Goldratt, E. M., 1980, “Optimized production timetable: a revolution program for industry”, APICS 23th International Conference Proceedings, pp. 172-176.
Gursel, A. S. and Bera, I. S., 1998, “Optimal Operator Assignment and Cell Loading when Lot-Splitting is Allowed”, Computer Ind. Engng., Vol. 35 , No. 3-4, pp. 431-434.
Hinterding, R., Gielewski, H., and Peachey, T. C., 1995, “The nature of Mutation in Genetic Algorithms,” Proceedings of the Sixth International Conference on Genetic Algorithms, 15-19 July, pp 65-72
Kimms, A., 1999, “A genetic algorithm for multi-level, multi-machine lot sizing and scheduling”, Computers & Operations Research , Vol. 26, pp. 829-848.
Kropp, D. H. and Smunt, T. L., 1988, “Optimal and heuristic models for lot-splitting in a flow shop”, Decision Sciences, Vol. 21, No. 4, pp. 691-709.
Lee, Y. H. and Pinedo, M., 1997, “Scheduling jobs on parallel machines with sequence-dependent setup times”, European Journal of Operational Research, Vol. 100, pp. 464-474.
Liaw, C. F., 2000, “A Hybrid Genetic Algorithm for the Open Shop Scheduling Problem”, European Journal of Operational Research, Vol. 124, pp. 28-42.
Macaskill, J. C., 1972, “Production-Line Balances for Mixed-Model Lines”, Management Science, Vol. 19, No. 4, pp. 423-434.
Mayer, D. G., Belward, J. A., and Burrage, K., 2001, “Robust Parameter Setting of Evolutionary Algorithms for the Optimization of Agricultural Systems Models”, Agricultural Systems 69, pp. 119-213.
Mayer, D. G., Belward, J. A., Widell, H., and Burrage, K., 1999, “Survival of the fittest-Genetic Algorithms versus Evolution Strategies in the Optimization of Systems Models”, Agricultural Systems 60, pp. 113-122.
Michalewicz, Z., 1996, Genetic Algorithms + Data Structures = Evolution Programs, 3rd Edition ,Springer ,Berlin.
Min, L. and Cheng, W., 1999, “A genetic algorithm for minimizing the makespan in the case of scheduling identical machines”, rtificial Intelligence in Engineering, Vol. 13, pp. 399-403.
Moily, J. P., 1986, ”Optimal and Heuristic Procedure for Component Lot Splitting in Multi-stage Manufacturing System”, Management Sciences, Vol.32
Srinivas, M. and Patnaik, L. M., 1994, “Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms”, IEEE Transactions on System, Man and Cybernetics, Vol. 24, No. 4, April.
Vasconcelos, J. A., Ramirez, J. A., Takahashi, R. H. C., and Saldanha, R. R., 2001 , “Improvements in genetic algorithms”, Magnetics, IEEE Transactions on , Vol. 37 , pp. 3414 –3417.
Vembu, S. and Srinivasan, G., 1997, “Heuristics for Operator Allocation and Sequencing In Product-line-cells with Manually Operated Machines”, Computer Ind. Engng., Vol. 32 ,No. 2, pp. 265-279.
Venkatachalam, A. R., 1995, ”An Analysis of an Embedded Crossover Scheme On A GA-Hard Problem”, Computer Ops Res, Vol. 22, No. 1, pp. 149-157.