| 研究生: |
陳雅文 Chen, Ya-wen |
|---|---|
| 論文名稱: |
表面電漿子增強螢光效應之研究 Study of Surface Plasmon-Enhanced Fluorescence Effects |
| 指導教授: |
陳顯禎
Chen, Shean-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 螢光 、表面電漿子 、內全反射 、生命週期 |
| 外文關鍵詞: | surface plasmons, fluorescence, lifetime, total internal reflection |
| 相關次數: | 點閱:102 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用表面電漿子共振(surface plasmons resonance,SPR)現象所研發的生物感測器已被廣泛研究及運用,而本論文主要藉由衰逝全反射(attenuated total reflection,ATR)方法來激發金屬薄膜中的表面電漿子(surface plasmons,SPs),經由區域電磁場的強化,來增強金屬膜上的螢光分子訊號。我們也藉由偵測螢光分子的生命週期變化來討論螢光訊號與金屬薄膜間之淬滅效應。
ATR方式如內全反射(total internal reflection,TIR)的方式一樣,光從高折射率的介質入射到低折射係數介質時,當入射光角度大於臨界角度並符合TIR時介面產生一種衰逝波(evanescent wave),此衰逝波可進而激發SPR,衰逝波為只存在於介面上約數百奈米內的表面波(surface wave),因此本論文探討100nm以下的不同厚度之介電層結構下表面電漿子增強螢光(surface plasmon-enhanced fluorescence,SPEF)的螢光強度訊號及螢光分子在金屬膜上會發生不同能量轉移的交互作用進而反應在生命週期上之效應。論文中製作SPEF感測器相較於內全反射螢光感測器約有2倍螢光增強之效應,而生命週期則隨介電層厚度增加而有上升之趨勢。
Biosensors based on surface plasmons resonance (SPR) have been extensively researched and applied. This thesis is focused to excite surface plasmons (SPs) on metal film by using attenuated total reflection (ATR) method to enhance the local electromagnetic field. With the filed enhancement, the fluorescence molecules on the metal film are excited and then their signal is improved. Also, the lifetime change of the fluorescence molecules is discussed and indicted to the quenching effect between the fluorescence signal and the metal film.
The ATR method similar to total internal reflection (TIR) method is to use light from high refractive index medium to low refractive index medium with the incident angle greater than critical angle. The light at the interface becomes into an evanescent wave, and the evanescent wave with a high k vector can excite SPs to achieve SPR when a metal thin film is inserted between the high and low refractive index media. The evanescent wave is a surface wave and only exists within few hundred nanometers from the interface. Therefore, this study is mainly to explore the factor of surface plasmon-enhanced fluorescence (SPEF) intensity with the different thickness of the dielectric layer between the metal and the fluoresce molecules. Furthermore, the excited fluorescence will transfer the fluorescent energy into the metal film to induce the change of the lifetime. The fluorescent sensor based on the SPEF can achieve the signal about 2-time enhancement compared to that of TIR fluorescence. The lifetime is increased when the thickness of the dielectric layer is increased.
1.A. Schonle and S. W. Hell, “Heating by absorption in the focus of an objective lens,” Opt. Lett. 23 (1998)325-327.
2.林俊佑、邱國智、余隆佑、張哲維、簡汎清、易政男、陳顯禎,“奈米電漿子生醫感測技術”台灣奈米會刊10 (2007) 20-37。
3.H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings, Berlin: Springer-Verlag (1998).
4.R.-Y. He, G.-L. Chang, H.-L. Wu, C.-H. Lin, K.-C.H Chiu, Y.-D. Su, and S.-J. Chen, “Enhanced live cell membrane imaging using plasmon-enhanced total internal reflection fluorescence microscopy,” Opt. Express 14 (2006) 9307-9316.
5.R.-Y. He, Y.-D. Su, K.-C. Cho, C.-Y. Lin, N.-S. Chang, C.-H. Chang, and S.-J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express. 17 (2009) 5987-5997.
6.E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D: Appl. Phys. 41 (2008) 1-31.
7.B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosening,” Sensors and Actuators 4 (1982) 299-304.
8.J. W. Chung, R. Bernhardt, and J. C. Pyun, “Sequential analysis of multiple analytes using a surface plasmon resonance (SPR) biosensor,” J. Immunol. Methods 311 (2006) 178-188.
9.易政男,藉由奈米電漿子偵測信號強化之表面電漿共振與表面強化拉曼散射生物感測器,國立中央大學光電科學研究所,博士論文(2005)。
10.S. Maier, P. Kik, H. Atwater, S. Meltzer, E. Harel, B. Koel, and A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide," Nat. Mater. 2 (2003) 229-232.
11.R.H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys.Rev.106 (1957) 874-881.
12.C. J. Powell and J. B. Swan, “Effect of oxidation on the characteristics loss sepectra of aluminum and magnesium,” Phys Rev. 118 (1960) 640-643.
13.蔡建宏,衰逝全反射生醫感測儀之研製,國立中央大學機械工程研究所,碩士論文(2002)。
14.簡汎清,超高解析度表面電漿共振生物感測器之研製,國立中央大學機械工程研究所,碩士論文(2003)。
15.Z. Salamon, H. A. Macleod, and G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein system. II: Applications to biological systems,” Biochimica et Biophysica Acta 1331 (1997) 131-152.
16.R. P. H. Kooyman, H. Kolkman, J.V. Gent, and J. Greve, “Surface plasmon resonance immunosensors: sensitivity considerations,” Analytica Chimica Acta 213 (1988) 35-45.
17.P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko and T. I. Ksenevich, “Surface plasmon resonance interfreometry for biological and chemical sensing,” Sensors and Actuators B 54 (1999) 43-50.
18.J. Homola and S. S. Yee, “Surface plasmon resonance sensor based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B 54 (1999) 16-24.
19.B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosening,” Sensor and Actuators 4 (1983) 299-304.
20.楊正義、陳吉峰、葉怡均、陳正龍、陳家俊,“金屬、半導體奈米晶體在生物檢測及分析上的應用”,物理雙月刊23 (2001) 667-677。
21.W. R. Holland and D. G. Hall, “Waveguide mode enhancement of molecular fluorescence,” Opt. Lett. 10 (1986) 414-416.
22.K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. Ⅱ. Enhanced fluorescence in optical waveguide sensors,” J. Opt. Soc. Am. B 5 (1997) 1160-1166.
23.吳民耀、劉威志,“表面電漿子理論與模擬”,物理雙月刊 28 (2006) 486-496。
24.R. F. Wallis and G. I. Stegeman, Electromagnetic Surface Excitations, Springer-Verlag (1985).
25.V. Owen, “Real-time optical immunosensors- acommercial reality,” Biosensors & Bioelectronics 12 (1997) 1-2.
26.A. Otto, “Wechselwirkung elektromagnetischer Oberflachen-wellen,” Z. Angew. Phys. 27 (1969) 207.
27.E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen,” Z. Phys. 241 1971 313-324.
28.吳秀菁、汪若文編,奈米檢測技術,初版,國家實驗研究院儀器科技研究中心 (2009)。
29.http://www.olympusmicro.com/primer/java/jablonski/jabintro/。
30.謝嘉民、賴一凡、林永昌、枋志堯,“光激發螢光量測的原理、架構及應用”,科儀新知 26 (2005) 39-51。
31.K. G. Sullivan and Dennis G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. I.Plane-wave spectrum approach to modeling classical effects,” J. Opt. Soc. Am. B 14 (1997) 1149-1159.
32.黃崑財,嶄新表面電漿子感測元件,國立中央大學光電科學研究所,碩士論文(2004)。
33.李正中,薄膜光學與鍍膜技術,第二版,藝軒圖書出版社(2001)。